103 research outputs found

    Wideband Spectrum Acquisition for UAV Swarm Using the Sparse Coding Fourier Transform

    Full text link
    As the trend towards small, safe, smart, speedy and swarm development grows, unmanned aerial vehicles (UAVs) are becoming increasingly popular for a wide range of applications. In this letter, the challenge of wideband spectrum acquisition for the UAV swarms is studied by proposing a processing method that features lower power consumption, higher compression rates, and a lower signal-to-noise ratio. Our system is equipped with multiple UAVs, each with a different sub-sampling rate. That allows for frequency backetization and estimation based on sparse Fourier transform theory. Unlike other techniques, the collisions and iterations caused by non-sparsity environ-ments are considered. We introduce sparse coding Fourier transform to address these issues. The key is to code the entire spectrum and decode it through spectrum correlation in the code. Simulation results show that our proposed method performs well in acquiring both narrowband and wideband signals simultaneously, compared to the other methods

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    Wideband Power Spectrum Sensing: a Fast Practical Solution for Nyquist Folding Receiver

    Full text link
    The limited availability of spectrum resources has been growing into a critical problem in wireless communications, remote sensing, and electronic surveillance, etc. To address the high-speed sampling bottleneck of wideband spectrum sensing, a fast and practical solution of power spectrum estimation for Nyquist folding receiver (NYFR) is proposed in this paper. The NYFR architectures is can theoretically achieve the full-band signal sensing with a hundred percent of probability of intercept. But the existing algorithm is difficult to realize in real-time due to its high complexity and complicated calculations. By exploring the sub-sampling principle inherent in NYFR, a computationally efficient method is introduced with compressive covariance sensing. That can be efficient implemented via only the non-uniform fast Fourier transform, fast Fourier transform, and some simple multiplication operations. Meanwhile, the state-of-the-art power spectrum reconstruction model for NYFR of time-domain and frequency-domain is constructed in this paper as a comparison. Furthermore, the computational complexity of the proposed method scales linearly with the Nyquist-rate sampled number of samples and the sparsity of spectrum occupancy. Simulation results and discussion demonstrate that the low complexity in sampling and computation is a more practical solution to meet the real-time wideband spectrum sensing applications

    Aryl Hydrocarbon Receptor Promotes IL-10 Expression in Inflammatory Macrophages Through Src-STAT3 Signaling Pathway

    Get PDF
    The aryl hydrocarbon receptor (AhR) is an important immune regulator with a role in inflammatory response. However, the role of AhR in IL-10 production by inflammatory macrophages is currently unknown. In this study, we investigated LPS-induced IL-10 expression in macrophages from AhR-KO mice and AhR-overexpressing RAW264.7 cells. AhR was highly expressed after LPS stimulation through NF-κB pathway. Loss of AhR resulted in reduced IL-10 expression in LPS-induced macrophages. Moreover, the IL-10 expression was elevated in LPS-induced AhR-overexpressing RAW264.7 cells. Maximal IL-10 expression was dependent on an AhR non-genomic pathway closely related to Src and STAT3. Furthermore, AhR-associated Src activity was responsible for tyrosine phosphorylation of STAT3 and IL-10 expression by inflammatory macrophages. Adoptive transfer of AhR-expressing macrophages protected mice against LPS-induced peritonitis associated with high IL-10 production. In conclusion, we identified the AhR-Src-STAT3-IL-10 signaling pathway as a critical pathway in the immune regulation of inflammatory macrophages, It suggests that AhR may be a potential therapeutic target in immune response

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Effects of Cr and Al Addition on Transformation and Properties in Low‐Carbon Bainitic Steels

    No full text
    Three low‐carbon bainitic steels were designed to investigate the effects of Cr and Al addition on bainitic transformation, microstructures, and properties by metallographic method and dilatometry. The results show that compared with the base steel without Cr and Al addition, only Cr addition is effective for improving the strength of low‐carbon bainitic steel by increasing the amount of bainite. However, compared with the base steel, combined addition of Cr and Al has no significant effect on bainitic transformation and properties. In Cr‐bearing steel, Al addition accelerates initial bainitic transformation, but meanwhile reduces the final amount of bainitic transformation due to the formation of a high‐temperature transformation product such as ferrite. Consequently, the composite strengthening effect of Cr and Al addition is not effective compared with individual addition of Cr in low‐carbon bainitic steels. Therefore, in contrast to high‐carbon steels, bainitic transformation in Cr‐bearing low‐carbon bainitic steels can be finished in a short time, and Al should not be added because Al addition would result in lower mechanical properties

    Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

    Get PDF
    The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and 250 °C), while it shows no significant difference at lower austempering temperature (200 °C). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of 220 °C. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time

    Effect of austenisation temperature on bainite transformation below martensite starting temperature

    Get PDF
    Effects of austenisation temperature on martensite and bainite transformation behaviour, microstructure, and mechanical properties of a bainitic steel austempered below martensite starting temperature were investigated in this study. Results show that the amount of athermal martensite gradually increased with the increase of austenisation temperature, whereas the amounts of bainite and retained austenite initially increased and then decreased, resulting in the trend of the first increase and then decrease in the product of tensile strength and elongation. In addition, the transformation rate of isothermal bainite after athermal martensite formation revealed a trend of deceleration and then acceleration with austenisation temperature at the beginning period. Moreover, the size of bainite plates decreased first and then increased with austenisation temperature

    Transformation Behavior and Properties of Carbide-Free Bainite Steels with Different Si Contents

    Get PDF
    The bainite transformation behavior and properties of low carbon carbide-free bainitic steels containing different silicon (Si) contents are investigated by two different types of heat treatment processes: isothermal transformation process (ITP) and continuous cooling process (CCP). The results indicate that for ITP and CCP, the transformation kinetics of bainite is retarded and the final bainite amount decreases with increasing Si content. However, both the strength and total elongation improve with the increase of Si content in the range of 1.0-2.0 wt%, resulting in an apparent increment in comprehensive property of bainitic steels due to the more film-like RA and less carbides. It can be attributed to the increase of shear strength and stability of undercooled austenite and the formation of Cottrell atmosphere, as well as the solid solution strengthening of Si because of higher Si content. In addition, for the same samples, better mechanical properties can be achieved by a lower austempering temperature. Moreover, the increase of Si content resulted in an increase in the temperatures of Ac1 and Ac3
    corecore