105 research outputs found

    The finite element modeling and stability prediction of high-speed spindle system dynamics with spindle-holder-tool joints

    Get PDF
    The stability of high-speed spindle system affects the surface finish and tool life directly, which is an important factor to evaluate its performance. Meanwhile, the spindle dynamics and cutting stability are affected by the structure and dynamics of spindle-holder-tool joints significantly. The joints are simplified as the distribution-spring, and the FEM modeling process of spindle system is proposed based on the thought of parallel rotor system. Taking a vertical machining center as example, the effectiveness of the modeling method is verified. Starting from the stability evaluation criteria and different ways of getting FRF, the influence factors of unconditional and conditional stability regions are analyzed. Based on the proposed model, the influence laws of cutting stability on cutting force amplitude and speed are characterized by the three-dimensional lobes, limit cutting depths and lobe intersections, which provide the theoretical basis for optimizing the processing and improving the cutting stability

    Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay: a DOBC approach

    Get PDF
    In this paper, a new predictor-based consensus disturbance rejection method is proposed for high-order multi agent systems with Lipschitz nonlinearity and input delay. First, a distributed disturbance observer for consensus control is developed for each agent to estimate the disturbance under the delay constraint. Based on the conventional predictor feedback approach, a non-ideal predictor based control scheme is constructed for each agent by utilizing the estimate of the disturbance and the prediction of the relative state information. Then, rigorous analysis is carried out to ensure that the extra terms associated with disturbances and nonlinear functions are properly considered. Sufficient conditions for the consensus of the multi-agent systems with disturbance rejection are derived based on the analysis in the framework of Lyapunov-Krasovskii functionals. A simulation example is included to demonstrate the performance of the proposed control scheme. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.National Natural Science Foundation of China [61673034]SCI(E)ARTICLE1,SI298-31535

    Formulation of locational marginal electricity-carbon price in power systems

    Get PDF
    Decarbonisation of power systems is essential for realising carbon neutrality, in which the economic cost caused by carbon is needed to be qualified. Based on the formulation of locational marginal price (LMP), this paper proposes a locational marginal electricity-carbon price (EC-LMP) model to reveal carbon-related costs caused by power consumers. A carbon-price-integrated optimal power flow (C-OPF) is then developed to maximise the economic efficiency of the power system considering the costs of electricity and carbon. Case studies are presented to demonstrate the new formulation and the results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy

    Formulation of Locational Marginal Electricity-Carbon Price in Power Systems

    Get PDF
    Decarbonisation of power systems is essential for realising carbon neutrality, in which the economic cost caused by carbon is needed to be qualified. Based on the formulation of locational marginal price (LMP), this paper proposes a locational marginal electricity-carbon price (EC-LMP) model to reveal carbon-related costs caused by power consumers. A carbon-price-integrated optimal power flow (C-OPF) is then developed to maximise the economic efficiency of the power system considering the costs of electricity and carbon. Case studies are presented to demonstrate the new formulation and the results demonstrate the efficacy of the EC-LMP-based C-OPF on decarbonisation and economy

    Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction

    Get PDF
    Wind power generation rapidly grows worldwide with declining costs and the pursuit of decarbonised energy systems. However, the utilization of wind energy remains challenging due to its strong stochastic nature. Accurate wind power forecasting is one of the effective ways to address this problem. Meteorological data are generally regarded as critical inputs for wind power forecasting. However, the direct use of numerical weather prediction in forecasting may not provide a high degree of accuracy due to unavoidable uncertainties, particularly for areas with complex topography. This study proposes a hybrid short-term wind power forecasting method, which integrates the corrected numerical weather prediction and spatial correlation into a Gaussian process. First, the Gaussian process model is built using the optimal combination of different kernel functions. Then, a correction model for the wind speed is designed by using an automatic relevance determination algorithm to correct the errors in the primary numerical weather prediction. Moreover, the spatial correlation of wind speed series between neighbouring wind farms is extracted to complement the input data. Finally, the modified numerical weather prediction and spatial correlation are incorporated into the hybrid model to enable reliable forecasting. The actual data in East China are used to demonstrate its performance. In comparison with the basic Gaussian process, in different seasons, the forecasting accuracy is improved by 7.02%–29.7% by using additional corrected numerical weather prediction, by 0.65–10.23% after integrating with the spatial correlation, and by 10.88–37.49% through using the proposed hybrid method.</p
    • …
    corecore