127 research outputs found

    Equivalence Checking of Quantum Finite-State Machines

    Full text link
    In this paper, we introduce the model of quantum Mealy machines and study the equivalence checking and minimisation problems of them. Two efficient algorithms are developed for checking equivalence of two states in the same machine and for checking equivalence of two machines. They are applied in experiments of equivalence checking of quantum circuits. Moreover, it is shown that the minimisation problem is proved to be in \textbf{PSPACE}

    Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters

    Get PDF

    Diet-sourced carbon-based nanoparticles induce lipid alterations in tissues of zebrafish (Danio rerio) with genomic hypermethylation changes in brain

    Get PDF
    With rising environmental levels of carbon-based nanoparticles (CBNs), there is an urgent need to develop an understanding of their biological effects in order to generate appropriate risk assessment strategies. Herein, we exposed zebrafish via their diet to one of four different CBNs: C60 fullerene (C60), single-walled carbon nanotubes (SWCNT), short multi-walled carbon nanotubes (MWCNTs) or long MWCNTs. Lipid alterations in male and female zebrafish were explored post-exposure in three target tissues (brain, gonads and gastrointestinal tract) using ‘omic’ procedures based in liquid chromatography coupled with mass spectrometry (LC-MS) data files. These tissues were chosen as they are often target tissues following environmental exposure. Marked alterations in lipid species are noted in all three tissues. To further explore CBN-induced brain alterations, Raman microspectroscopy analysis of lipid extracts was conducted. Marked lipid alterations are observed with males responding differently to females; in addition, there also appears to be consistent elevations in global genomic methylation. This latter observation is most profound in female zebrafish brain tissues post-exposure to short MWCNTs or SWCNTs (P < 0.05). This study demonstrates that even at low levels, CBNs are capable of inducing significant cellular and genomic modifications in a range of tissues. Such alterations could result in modified susceptibility to other influences such as environmental exposures, pathology and, in the case of brain, developmental alterations
    • …
    corecore