96 research outputs found

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    Combined state and parameter estimation for Hammerstein systems with time-delay using the Kalman filtering

    Get PDF
    This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time-delay. Both the process noise and the measurement noise are considered in the system. Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms

    Mammalian STE20-Like Kinase 1 Deletion Alleviates Renal Ischaemia-Reperfusion Injury via Modulating Mitophagy and the AMPK-YAP Signalling Pathway

    Get PDF
    Background/Aims: The aim of our study is to investigate the molecular mechanism by which mammalian STE20-like kinase 1 (Mst1) participates in renal I/R injury through modifying mitophagy and the AMPK-YAP signalling pathway. Methods: WT mice and Mst1-knockout mice were subjected to renal ischaemia-reperfusion (I/R) in vivo. In vitro, the hypoxia-reoxygenation model was used with renal tubular epithelial cells to mimic renal I/R injury. Mitochondrial function was monitored via western blotting and immunofluorescence. Pathway blocker and siRNA knockout technology were used to establish the role of the AMPK-YAP signalling pathway in Mst1-mediated mitochondrial apoptosis in the setting of renal I/R injury. Results: Our data demonstrated that Mst1 expression was upregulated in response to renal I/R injury in vivo, and a higher Mst1 content was positively associated with renal dysfunction and more tubular epithelial cell apoptosis. However, genetic ablation of Mst1 improved renal function, alleviated reperfusion-mediated tubular epithelial cell apoptosis, and attenuated the vulnerability of kidney to I/R injury. In vitro, Mst1 upregulation induced mitochondrial damage including mitochondrial potential reduction, ROS overloading, cyt-c liberation and caspase-9 apoptotic pathway activation. At the molecular levels, I/R-mediated mitochondrial damage via repressing mitophagy and Mst1 suppressed mitophagy via inactivating AMPK signalling pathway and dowregulating OPA1 expression. Re-activation of AMPK-YAP-OPA1 signalling pathway provided a survival advantage for the tubular epithelial cell in the context of renal I/R injury by repressing mitochondrial fission. Conclusion: Overall, our results demonstrate that the pathogenesis of renal I/R injury is closely associated with an increase in Mst1 expression and the inactive AMPK-YAP-OPA1 signalling pathway. Based on this, strategies to repress Mst1 expression and activate mitophagy could serve as therapeutic targets to treat kidney ischaemia-reperfusion injury

    Study on the substitutability of nighttime light data for SDG indicators: a case study of Yunnan Province

    Get PDF
    Introdution: One crucial method to attain Sustainable Development Goals (SDGs) involves timely adjustment of development policies, promoting the realization of SDGs through a time-series assessment of the degree of accomplishment. In practical applications, data acquisition is a significant constraint in evaluating the SDGs, not only in China but across the globe. Hence, expanding data channels and exploring the feasibility of various data sources for sustainable development assessment are effective strategies to tackle the challenge of data acquisition.Methods: In light of this issue, this study selected Nighttime Light Data, a remote sensing data source closely linked to human social activities, as an alternative data source. Using Yunnan Province as an example, 16 localized indicators of social, economic, and environmental types were chosen. These indicators were then subjected to a correlation analysis with the Total Nighttime Light Index (TNLI). The relationships between different types of indicators and TNLI were analyzed at both temporal and spatial scales, thus identifying the indicators for which TNLI could serve as a suitable substitute measure.Results: The study indicates that when the SDG indicators are classified into economic, social and environmental categories, the total value of nighttime light presents a significant correlation and substitutability with economic indicators; significantly correlated with some social indicators, it can reveal the weak links in the development of underdeveloped areas; it is not significantly correlated with environmental indicators, while a trend correlation exists, which can provide some reference values.Discussion: This study has demonstrated the feasibility of using Nighttime Light Data for sustainable development assessment. It provides a novel evaluation method for countries that, despite a lack of resources for conducting sustainable development assessments, have a greater need for such assessments due to their lower economic development. Furthermore, a multitude of assessment methods can be developed based on Nighttime Light Data

    Hyperglycaemia Stress-Induced Renal Injury is Caused by Extensive Mitochondrial Fragmentation, Attenuated MKP1 Signalling, and Activated JNK-CaMKII-Fis1 Biological Axis

    Get PDF
    Background/Aims: Hyperglycaemia stress-induced renal injury is closely associated with mitochondrial dysfunction through poorly understood mechanisms. The aim of our study is to explore the upstream trigger and the downstream effector driving diabetic nephropathy via modulating mitochondrial homeostasis. Methods: A diabetic nephropathy model was generated in wild-type (WT) mice and MAP Kinase phosphatase 1 transgenic (MKP1-TG) mice using STZ injection. Cell experiments were conducted via high-glucose treatment in the human renal mesangial cell line (HRMC). MKP1 overexpression assay was carried out via adenovirus transfection. Renal function was evaluated via ELISA, western blotting, histopathological staining, and immunofluorescence. Mitochondrial function was determined via mitochondrial potential analysis, ROS detection, ATP measurement, mitochondrial permeability transition pore (mPTP) opening evaluation, and immunofluorescence for mitochondrial pro-apoptotic factors. Loss- and gain-of-function assays for mitochondrial fragmentation were performed using a pharmacological agonist and blocker. Western blotting and the pathway blocker were used to establish the signalling pathway in response to MKP1 overexpression in the presence of hyperglycaemia stress. Results: MKP1 was downregulated in the presence of chronic high-glucose stress in vivo and in vitro. However, MKP1 overexpression improved the metabolic parameters, enhanced glucose control, sustained renal function, attenuated kidney oxidative stress, inhibited the renal inflammation response, alleviated HRMC apoptosis, and repressed tubulointerstitial fibrosis. Molecular investigation found that MKP1 overexpression enhanced the resistance of HRMC to the hyperglycaemic injury by abolishing mitochondrial fragmentation. Hyperglycaemia-triggered mitochondrial fragmentation promoted mitochondrial dysfunction, as evidenced by decreased mitochondrial potential, elevated mitochondrial ROS production, increased pro-apoptotic factor leakage, augmented mPTP opening and activated caspase-9 apoptotic pathway. Interestingly, MKP1 overexpression strongly abrogated mitochondrial fragmentation and sustained mitochondrial homeostasis via inhibiting the JNK-CaMKII-Fis1 pathway. After re-activation of the JNK-CaMKII-Fis1 pathway, the beneficial effects of MKP1 overexpression on mitochondrial protection disappeared. Conclusion: Taken together, our data identified the protective role played by MKP1 in regulating diabetic renal injury via repressing mitochondrial fragmentation and inactivating the JNK-CaMKII-Fis1 pathway, which may pave the road to new therapeutic modalities for the treatment of diabetic nephropathy

    Screening of the Key Genes and Signalling Pathways for Diabetic Nephropathy Using Bioinformatics Analysis

    Get PDF
    BackgroundThis study aimed to identify biological markers for diabetic nephropathy (DN) and explore their underlying mechanisms.MethodsFour datasets, GSE30528, GSE47183, GSE104948, and GSE96804, were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using the “limma” package, and the “RobustRankAggreg” package was used to screen the overlapping DEGs. The hub genes were identified using cytoHubba of Cytoscape. Logistic regression analysis was used to further analyse the hub genes, followed by receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. Correlation analysis and enrichment analysis of the hub genes were performed to identify the potential functions of the hub genes involved in DN.ResultsIn total, 55 DEGs, including 38 upregulated and 17 downregulated genes, were identified from the three datasets. Four hub genes (FN1, CD44, C1QB, and C1QA) were screened out by the “UpSetR” package, and FN1 was identified as a key gene for DN by logistic regression analysis. Correlation analysis and enrichment analysis showed that FN1 was positively correlated with four genes (COL6A3, COL1A2, THBS2, and CD44) and with the development of DN through the extracellular matrix (ECM)–receptor interaction pathway.ConclusionsWe identified four candidate genes: FN1, C1QA, C1QB, and CD44. On further investigating the biological functions of FN1, we showed that FN1 was positively correlated with THBS2, COL1A2, COL6A3, and CD44 and involved in the development of DN through the ECM–receptor interaction pathway. THBS2, COL1A2, COL6A3, and CD44 may be novel biomarkers and target therapeutic candidates for DN

    Conical beam monopole antenna design for Chinese area positioning system

    Get PDF
    This article describes the operational principle of the satellite-based Chinese Area Positioning System (CAPS) and proposes a monopole antenna for a large anchored buoy platform in harsh marine environment. The proposed antenna is highly omnidirectional with sufficiently wide half-power beamwidth (HPBW) greater than 40˚ (i.e., not less than ±20° swing) by using a conical ground plane, taking into account the geostationary satellite position, link budget, sea conditions, volume and cost. The impedance bandwidth defined by 10 dB return loss is 750 MHz (5.60-6.35 GHz), and the main lobe direction and the half-power beamwidth are about 46° and 43° at the operating frequency 5.885 GHz, respectively. The antenna prototype has been installed on-site to test its performance in sea. The results confirm that the proposed antenna is a suitable candidate for a variety of CAPS applications in China

    Novel loci and pathways significantly associated with longevity

    Get PDF
    Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10(−5)). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity

    Applicability and Advantage of Mitochondrial Metagenomics and Metabarcoding in Spider Biodiversity Survey

    No full text
    Spiders are an extraordinary animal group with extremely high diversity in species, morphology, and behavior. Accurate estimation of species diversity and community composition is essential in spider ecological studies as well as applications of biodiversity surveys and monitoring. However, spider biodiversity surveys still largely utilize the morphology-based approach, which is often time-consuming and highly dependent on taxonomic experts. In this study, we tested the applicability of mitochondrial metagenomic and metabarcoding methods in the biodiversity survey of spiders. Local mitogenome and barcode databases of 62 reference species were built using next-generation sequencing and Sanger sequencing technologies. The performances of mitochondrial metagenomics, metabarcoding, and morphological methods were compared for five plot samples of spiders. The results show that the molecular methods (mitochondrial metagenomics and metabarcoding) have a higher species detection rate compared with the traditional morphological biodiversity method, which is largely due to their capability of incorporating the large proportion of immature specimens in each plot into the biodiversity assessment. Our study demonstrates the great potential of molecular approaches in advancing spider biodiversity and community ecology studies and suggests that by combining both mitochondrial metagenomic and metabarcoding methods we could provide more accurate and reliable biodiversity assessment for spiders
    corecore