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SUMMARY

This paper discusses the state and parameter estimation problem for a class of Hammerstein state space
systems with time-delay. Both the process noise and the measurement noise are considered in the system.
Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive
identification model is obtained. For the unknown states in the information vector, the Kalman filter is used
to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least
squares algorithms are proposed. Extending the information vector to include the latest information terms
which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is
derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation
results are given to illustrate the effectiveness of the proposed algorithms. Copyright c© 2016 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: Parameter identification; Kalman filter; State estimation; Least squares; Hammerstein
state space model

1. INTRODUCTION

The Hammerstein model consists of an input static nonlinear block in series with a dynamic linear

subsystem and can describe a wide variety of practical nonlinear systems, e.g., wind turbines [1],

valve actuators [2] and power amplifiers [3]. Despite its simplicity, as a block-oriented nonlinear

system, the Hammerstein model can include many different kinds of components in the nonlinear

and linear blocks. The memoryless nonlinearities include polynomial, piecewise linear descriptions,

saturation, preload, deadzone, backlash and so on [4, 5]. The linear subsystems may be some

parametric forms, such as state space representations, transfer functions, FIR, IIR and so on [6, 7].

Much research work has been performed on the identification of Hammerstein models.

For example, Wang and Zhang studied an improved least squares identification algorithm for

multivariable Hammerstein output error moving average systems by using the Taylor expansion

on a quadratic criterion function and defining the information vector as the derivative of the noise

variable to the unified parameter vector [8]; Chen et al derived a hierarchical gradient parameter

estimation algorithm for Hammerstein nonlinear systems using the key term separation principle [9];
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2 J. MA, F. DING, W. XIONG AND E. YANG

Liu and Bai presented a normalized iterative identification algorithm for Hammerstein systems

which nonlinearities are with nonsmooth piecewise-linear structures [10].

In practical applications, disturbances widely exist [11, 12]. Especially in the area of signal

processing and parameter estimation [13], the measured output always contain the disturbances

from process environments [14]. The disturbance can be white noise or colored noise. Both the

process noise and the measurement noise will bring some influence to the result of the systems

to be identified. For the parameter estimation, the measurement noise has been widely discussed

in the literatures [15, 16, 17], but the process noise is few considered in the model structure. For

example, Hu et al. studied a parameter estimation problem for a Wiener system which is disturbed

by the moving average measurement noise and derived two recursive extended least squares

parameter estimation algorithms based on the over-parameterization models [18]; Li derived a

maximum likelihood parameter estimation algorithm for Hammerstein systems which are disturbed

by autoregressive moving average noise [19].

The state space models can describe dynamic linear and nonlinear systems [20, 21, 22] and play

an important part in system identification [23] and signal filtering [24, 25]. The identification of the

state space models has received much attention [26]. Chen et al. discussed the parameter and state

estimation problem of a single-input single-output dual-rate system with time-delay based on the

gradient search and the least squares principle [27]; Xie and Yang derived a gradient-based iterative

identification algorithm for nonuniform sampling state space models [28]. In the field of nonlinear

state space models, Schön et al. derived an expectation maximization (EM) algorithm under the

framework of a maximum likelihood for the parameter estimation of a class of nonlinear state space

dynamic systems [29]; Deng and Huang studied the identification problem of nonlinear parameter

varying state space models with missing output data by using the particle filter to compute the

expectation functions under the scheme of the EM algorithm [30].

For the input nonlinear state space systems, Wang and Ding derived an over-parameterization

model based stochastic gradient algorithm to obtain the parameter estimates, but they did not

consider the process noise and the time-delay in the model structure [31]. On the basis of the work

in [31], this paper investigates the state and parameter estimation problem for the input nonlinear

Hammerstein systems with time-delay. The difficulties are that the system not only contains the

unknown parameters but also the unknown system states and the time-delay. The Kalman-filter

based least squares iterative (LSI) algorithm and recursive least squares (RLS) algorithm are derived

for the combined estimation of the state and parameter. For the unknown time-delay, a Kalman-

filter based recursive extended least squares (KF-RELS) algorithm is proposed by extending the

information vector and the parameter vector. The proposed algorithms are different from the least

squares algorithm in [32], which decomposes the bilinear cost function into three linear functions by

using the hierarchical identification principle and uses the state observer to get the estimates of the

unknown states. Also, the proposed algorithms are different from the over-parameterization based

recursive least squares algorithm in [33], which ignores the process noise in the model structure and

the influence of the measurement noise in the process of updating the estimates of the system states.

The main contributions of this paper are as follows.

• A more common model structure is considered which contains both process noise and

measurement noise. By using the key term separation technique, the output of the system

is expressed as a linear combination of all the unknown parameters. Then a pseudo-linear

regressive identification model is obtained;

• For the known and unknown time-delay, a recursive least squares algorithm and a recursive

extended least squares algorithm are derived to identify the unknown parameters;

• By using the Kalman filter, a joint state and parameter estimation algorithm is presented

to obtain the estimates of the unknown parameters both in the linear subsystem and in the

memoryless nonlinear block as well as the unmeasured system states.

The rest of this paper is organized as follows. Section 2 gives the identification model of

Hammerstein systems with dynamic state space subsystem. Section 3 derives the Kalman-filter

based LSI and RELS identification algorithms for a class of Hammerstein nonlinear systems. The

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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COMBINED STATE AND PARAMETER ESTIMATION 3

KF-RELS algorithm is proposed in Section 4. Section 5 provides two numerical examples to show

the effectiveness of the proposed algorithms. Finally, Section 6 offers some concluding remarks.

2. SYSTEM DESCRIPTION AND IDENTIFICATION MODEL

Let us define some notation. “A =: X” or “X := A” stands for “A is defined as X”; x̂k denotes the

estimate of x at time k; x̂s
k denotes the estimate of xk at iteration s; the symbol I (In) stands for an

identity matrix of appropriate sizes (n × n); the superscript T denotes the matrix/vector transpose;

1n represents an n-dimensional column vector whose elements are 1.

Consider the following Hammerstein nonlinear system as shown in Figure 1, which is composed

of a static nonlinear block followed by a linear dynamic subsystem. The linear subsystem is

described by a state space model with moving average measurement noise. The time-delay is

considered in the output block.

- f(·) - b - d+ -?

wk

z−1 -

A

6
C - z−τ - d+ -?

D(z)-
vk

uk ūk xk+1 xk yk

Figure 1. The Hammerstein state space model with time-delay

The Hammerstein state space model can be written as

xk+1 = Axk + būk + wk, (1)

yk = cxk−τ +

nd
∑

i=1

divk−i + vk, (2)

where yk is the measured output, ūk is the output of the static nonlinear block,

wk := [w1,k, w2,k, · · · , wn,k]T ∈ R
n and vk represent mutually independent process noise

and measurement noise with zero mean and variance Q and R, respectively. xk :=
[x1,k, x2,k, · · · , xn,k]T ∈ R

n is the system state vector. A ∈ R
n×n is the system parameter matrix,

b ∈ R
n and c ∈ R

1×n are the parameter vectors,

A :=

















−a1 1 0 · · · 0

−a2 0 1
...

...
...

. . . 0
−an−1 0 · · · 0 1
−an 0 · · · · · · 0

















∈ R
n×n, b :=















b1

b2

...

bn−1

bn















∈ R
n,

c := [1, 0, 0, · · · , 0] ∈ R
1×n.

Assume that the output of the nonlinear block is a linear function of the known basis:

ūk = γ1f1(uk) + γ2f2(uk) + · · · + γmfm(uk) =
m

∑

j=1

γjfj(uk). (3)

where γ′

is are the unknown coefficients and fi(uk)′s are the base functions. Let

γ := [γ1, γ2, · · · , γm]T ∈ R
m,

f(uk) := [f1(uk), f2(uk), · · · , fm(uk)] ∈ R
1×m.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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4 J. MA, F. DING, W. XIONG AND E. YANG

From (1), we have

x1,k+1 =−a1x1,k + x2,k + b1ūk + w1,k, (4)

x2,k+1 =−a2x1,k + x3,k + b2ūk + w2,k,

...

xi,k+1 =−aix1,k + xi+1,k + biūk + wi,k, (5)

...

xn,k+1 =−anx1,k + bnūk + wn,k.

Multiplying z−j−1 on both sides of (5) gives

xi,k−j = −aix1,k−j−1 + xi+1,k−j−1 + biūk−j−1 + wi,k−j−1, j = 0, 1, 2, · · · , n. (6)

Substituting (6) into (4), we have

x1,k+1 =−a1x1,k − a2x1,k−1 + x3,k−1 + b2ūk−1 + b1ūk + w2,k−1 + w1,k

=−a1x1,k − a2x1,k−1 − a3x1,k−2 + x4,k−2 + b3ūk−2 + b2ūk−1 + b1ūk + w3,k−2

+w2,k−1 + w1,k

=−a1x1,k − a2x1,k−1 − · · · − anx1,k−n+1 + bnūk−n+1 + · · · + b2ūk−1 + b1ūk

+wn,k−n+1 + · · · + w1,k

=−
n

∑

i=1

aix1,k−i+1 +
n

∑

i=1

bi

m
∑

j=1

γjfj(uk−i+1) +
n

∑

i=1

wi,k−i+1. (7)

Multiplying both sides of (7) by z−τ−1 gives

x1,k−τ = −
n

∑

i=1

aix1,k−τ−i +
n

∑

i=1

bi

m
∑

j=1

γjfj(uk−τ−i) +
n

∑

i=1

wi,k−τ−i. (8)

Substituting (8) into (2) gives

yk = x1,k−τ + D(z)vk

=−
n

∑

i=1

aix1,k−τ−i +
n

∑

i=1

bi

m
∑

j=1

γjfj(uk−τ−i) +
n

∑

i=1

wi,k−τ−i +

nd
∑

i=1

dnd
vk−i + vk. (9)

Note that the model in (9) contains the product of the parameter vectors b and γ of the linear

and nonlinear blocks, which increases the complexity of identification. Besides, any identification

scheme cannot distinguish (b,γ) from (αb,γ/α) for some nonzero and finite constant α, because
any pair (αb, ūk/α) would produce identical input and output measurements. Therefore, in order to

get unique parameter estimates, one of the entries of b and γ has to be fixed. Here, adopt the key

term separation technique [34,35] and let the first element of the vector b equal 1; i.e., b1 = 1. Then
Equation (9) can be rewritten as

yk = −

n
∑

i=1

aix1,k−τ−i +

m
∑

j=1

γjfj(uk−τ−i) +

n
∑

i=2

biūt−τ−i +

n
∑

i=1

wi,k−τ−i +

nd
∑

i=1

dnd
vk−i + vk.

(10)

Let n1 = 2n + m + nd − 1 and define parameter vectors and information vectors as

ϑ := [a1, a2, · · · , an,γT, b2, b3, · · · , bn]T ∈ R
2n+m−1,

d := [d1, d2, · · · , dnd
]T ∈ R

nd ,

ϕk := [−x1,k−τ−1,−x1,k−τ−2, · · · ,−x1,k−τ−n,f(uk−τ−1), ūk−τ−2, ūk−τ−3, · · · , ūk−τ−n,φT
k]T ∈ R

n1 ,

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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COMBINED STATE AND PARAMETER ESTIMATION 5

φk := [vk−1, vk−2, · · · , vk−nd
]T ∈ R

nd ,

θ :=

[

ϑ

d

]

∈ R
n1 .

Then Equation (10) can be written as

yk = ϕT
kθ +

n
∑

i=1

wi,k−τ−i + vk.

Let ek :=
∑n

i=1
wi,k−τ−i + vk. Since both the process noise wk and measurement noise vk are

Gaussian white noises, and wk ∼ N(0,Q), vk ∼ N(0, R), then the output yk of the system in

Figure 1 can be expressed by the following pseudo-linear regressive form:

yk = ϕT
kθ + ek. (11)

The objective of this paper is to derive identification algorithms to estimate the states and

parameters ai, bi, γi and di and the time-delay (if it is unknown) for the Hammerstein state space

model by using the measured input-output data {uk, yk}.
For the model in (11), the number of the unknown parameters in the vector θ is n1 := 2n + m +

nd − 1. In fact, there is another model which is called the over-parameterization model to deal with

the product term of b and γ. For example, the method in [33] expresses the parameter vector as

θ := [a1, a2, · · · , an, b1γ1, b2γ1, · · · , bnγ1, b1γ2, b2γ2, · · · , bnγ2, · · · ,

b1γm, b2γm, · · · , bnγm, d1, d2, · · · , dnd
]T ∈ R

n+nm+nd . (12)

In that situation, the number of the unknown parameters in the vector θ is n2 := n + nm + nd.

Since both n and m are positive integers, the difference between n1 and n2 is ∆n := n2 − n1 =
nm − n − m + 1 > 0. That means that the dimension of the unknown parameter vector in the over-

parameterization method is larger than that in the key term separation based medthod. When the

order of the state space model becomes higher or the polynomial f(ut) has more components, the

difference ∆n will become large. Thus the method of this paper requires lower computational load

for realizing the parameter estimation algorithm.

3. THE KALMAN-FILTER BASED LEAST SQUARES ALGORITHMS WITH KNOWN

TIME-DELAY

In process control industry, the phenomenon of time-delay often exists in the procedure of signal

transmission. Based on the empirical knowledge, it is assumed that the time-delay is known. In this

section, we derive the Kalman-filter based least squares algorithms to identify the Hammerstein

dynamic system with known time-delay.

3.1. The state estimation algorithm

The Kalman filter can give the state estimates [36]. There are two steps in the Kalman filter, one is

called the time update (or prediction), the other is called the measurement update (or modification).

On the prediction step, the prior estimates of the state and its covariance are predicted; on the

modification step, the newest measurement and prior estimates are combined together to modify the

posterior estimates.

Because the parameter matrix/vectors are unknown, we need to use the estimated parameter

vector

θ̂k := [â1,k, â2,k, · · · , ân,k, γ̂1,k, γ̂2,k, · · · , γ̂m,k, b̂2,k, · · · , b̂n,k, d̂1,k, d̂2,k, · · · , d̂nd,k]

to construct the estimates Âk and b̂k of A and b, and use the estimated parameter matrix Âk and

the estimated parameter vector b̂k to compute the estimate x̂k+1 of the state vector xk+1. Here, the

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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6 J. MA, F. DING, W. XIONG AND E. YANG

Kalman filter is used to generate the optimal state estimate. Considering the time delay τ in the

output, we can use the following Kalman filter to obtain the state estimate x̂k+1 [23]:

x̄k+1 = Âkx̂k + b̂kūk, x̂1 = 1n/p0 (13)

P̄ k = ÂkP kÂ
T

k + Q, P 1 = In (14)

Lk = P̄ kcT(cP̄ kcT + R)−1, (15)

x̂k+1 = x̄k+1 + Lk(yk+1+τ − cx̄k+1), (16)

P k+1 = P̄ k − LkcP̄ k, (17)

Âk =

















−â1,k 1 0 · · · 0

−â2,k 0 1
...

...
...

. . . 0
−ân−1,k 0 · · · 0 1
−ân,k 0 · · · · · · 0

















, (18)

b̂k = [1, b̂2,k, b̂3,k, · · · , b̂n,k]T, (19)

where x̄k+1 is a prior estimate of the state xk+1 for given measurements up to and including time k;
x̂k+1 is a posterior estimate of the state xk+1 for given measurements up to and including time k + 1;
P̄ k is the variance of the prior estimation error; P k+1 is the variance of the posterior estimation

error; Lk is the Kalman gain vector.

Another frequently used method for state estimation is to use the state observer [32] which can

be used to get the approximate values of the system states. The drawback of the state observer is

that it is generally suitable for deterministic systems. Thus this paper uses the parameter estimates

based Kalman filter for generating the state estimates in the stochastic framework.

3.2. The iterative parameter estimation algorithm

Opt a set of data from j = k to j = k + L − 1 (L denotes the data length) and define the stacked

output vector Y k,L and stacked information matrix Φk,L as

Y k,L :=











yk

yk+1

...

yk+L−1











∈ R
L; Φk,L :=











ϕT
k

ϕT
k+1

...

ϕT
k+L−1











∈ R
L×n1 .

According to (11), we define a criterion function

J1(θ) = ‖Y k,L − Φk,Lθ‖2.

Let s = 1, 2, 3, · · · be an iterative variable and θ̂
s

k be the estimate of θ at iteration s. Minimizing the

criterion function J1(θ) and letting the derivative of J1(θ) with respect to θ be zero gives

∂J1(θ)

∂θ

∣

∣

∣

∣

θ=θ̂s

k

= −2ΦT
k,L[Y k,L − Φk,Lθ̂

s

k] = 0.

Then we can obtain the least squares estimate of the parameter vector θ:

θ̂
s

k = [ΦT
k,LΦk,L]−1

Φ
T
k,LY k,L. (20)

But we cannot obtain the estimate θ̂
s

k directly from (20), because the information vector ϕk in Φk,L

contains the unknown state variable x1,k−τ−i, the unknown output ūk−i of the nonlinear block and

the unknown noise terms vk−j . The scheme here is to replace x1,k−τ−i, ūk−i and vk−j in ϕk with

their corresponding estimates x̂s−1

1,k−τ−i, ˆ̄us−1

k−i and v̂s−1

k−j at iteration s − 1 and define

ϕ̂s
k = [−x̂s−1

1,k−τ−1
,−x̂s−1

1,k−τ−2
, · · · ,−x̂s−1

1,k−τ−n,f(uk−τ−1), ˆ̄us−1

k−τ−2
, · · · , ˆ̄us−1

k−τ−n, v̂s−1

k−1
,

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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COMBINED STATE AND PARAMETER ESTIMATION 7

v̂s−1

k−2
, · · · , v̂s−1

k−nd
]T.

Replacing the unknown coefficient γj in (3) with its estimate γ̂s
j,k gives

ˆ̄us
k = γ̂s

1,kf1(uk) + γ̂s
2,kf2(uk) + · · · + γ̂s

m,kfm(uk).

From (2), we have

vk = yk − cxk−τ − dTφk. (21)

Replace xk−τ , φk and d in (21) with their estimates x̂s
k−τ , φ̂

s

k and d̂
s

k, the estimate v̂s
k can be

computed by

v̂s
k = yk − cx̂s

k−τ − (d̂
s

k)Tφ̂
s

k.

Define

Φ̂
s

k,L := [ϕ̂s
k, ϕ̂s

k+1, · · · , ϕ̂s
k+L−1]

T ∈ R
L×n1 .

Replacing the information matrix Φk,L in (20) with its estimate Φ̂
s

k,L and using the Kalman filter to

obtain the estimates of the unknown states, we can get the Kalman-filter based least squares iterative

(KF-LSI) algorithm for estimating the parameters and states of the Hammerstein state space models:

θ̂
s

k = [(Φ̂
s

k,L)TΦ̂
s

k,L]−1(Φ̂
s

k,L)TY k,L, (22)

Y k,L = [yk, yk+1, · · · , yk+L−1]
T, (23)

Φ̂
s

k,L = [ϕ̂s
k, ϕ̂s

k+1, · · · ϕ̂
s
k+L−1]

T, (24)

ϕ̂s
k = [−x̂s−1

1,k−τ−1
,−x̂s−1

1,k−τ−2
, · · · ,−x̂s−1

1,k−τ−n,f(uk−τ−1), ˆ̄us−1

k−τ−2
, · · · , ˆ̄us−1

k−τ−n,

v̂s−1

k−1
, · · · , v̂s−1

k−nd
]T, (25)

ˆ̄us
k = γ̂s

1,kf1(uk) + γ̂s
2,kf2(uk) + · · · + γ̂s

m,kfm(uk), (26)

v̂s
k = yk − cx̂s

k−τ − (d̂
s

k)Tφ̂
s

k, (27)

θ̂
s

k = [âs
1,k, âs

2,k, · · · , âs
n,k, γ̂s

1,k, γ̂s
2,k, · · · , γ̂s

m,k, b̂s
2,k, · · · , b̂s

n,k, d̂s
1,k, · · · , d̂s

nd,k]T, (28)

Â
s

k =

















−âs
1,k 1 0 · · · 0

−âs
2,k 0 1

...
...

...
. . . 0

−âs
n−1,k 0 · · · 0 1

−âs
n,k 0 · · · · · · 0

















, (29)

b̂
s

k = [1, b̂s
2,k, b̂s

3,k, · · · , b̂s
n,k]T, (30)

x̄s
k+1 = Â

s

kx̂s
k + b̂

s

kūk, x̂s
1 = 1n/p0, (31)

P̄ k = Â
s

kP k(Â
s

k)T + Q, P 1 = In, (32)

Lk = P̄ kcT(cP̄ kcT + R)−1, (33)

x̂s
k+1 = x̄s

k+1 + Lk(yk+1+τ − cx̄s
k+1), (34)

P k+1 = P̄ k − LkcP̄ k. (35)

Remark 1 The iterative algorithm is implemented off-line, it repeatedly uses a batch of observed

data and can get good parameter estimates after only several iterations [37, 38, 39, 40]. In the LSI

algorithm, the measured input-output data should be collected in advance.

The flowchart of computing the parameter estimates θ̂
s

k and the state estimate x̂s
k by the KF-LSI

algorithm is shown in Figure 2.
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Start: set τ and ǫ

¶
µ

³
´

?
Initialize: s = 1, give x̂1

k, ˆ̄u0
−i,

x̂0
1,−i and v̂0

−i, i = 0, 1, 2, . . .

?
Collect input and output data

?
Construct ϕ̂s

k, Φ
s
k,L and Y k,L

?
Update θ̂

s

k

?
Construct Â

s

k and b̂
s

k

?
Compute x̄s

k+1
and P̄ k+1

?
Compute Lk, update x̂s

k+1

?
Update P k+1

?
Update ˆ̄us

k and v̂s
k

?»»»»»»»»»

XXXXXXXXX

XXXXXXXXX

»»»»»»»»»‖θ̂
s

k − θ̂
s−1

k ‖ > ε?

No

Yes

¾s := s + 1

?
Obtain the estimate θ̂

s

k and x̂s
k

?
k := k + 1

¾

Figure 2. The flowchart of the KF-LSI algorithm for computing θ̂
s
k, x̂

s
k

3.3. The recursive parameter estimation algorithm

Unlike the LSI algorithm, the RLS algorithm may be carried out on-line. By defining a covariance

matrix, the RLS algorithm uses the input and output data to update the parameter estimates at each

step. In this section, a Kalman filter based RLS algorithm is derived.

Similarly, according to (11), define a quadratic criterion function

J2(θ) =
k

∑

j=1

[y(j) − ϕT
jθ]2.

Minimizing J2(θ) using the least squares principle, letting the partial derivative of J2(θ) with

respect to θ be zero, we can obtain

θ̂k = θ̂k−1 + L1,k[yk − ϕT
kθ̂k−1], (36)
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L1,k = P 1,k−1ϕk[1 + ϕT
kP 1,k−1ϕk]−1, (37)

P 1,k = [I − L1,kϕT
k]P 1,k−1. (38)

Because the information vector ϕk contains the unmeasurable state variable x1,k−τ−i, unknown

output of nonlinear block ūk−i and the unknown noise vk−j , the algorithm in (36)–(38) cannot be

implemented. Here we replace x1,k−τ−i, ūk−i and vk−j in ϕk with their corresponding estimates

x̂1,k−τ−i, ˆ̄uk−i and v̂k−j at time k and define

ϕ̂k := [−x̂1,k−τ−1,−x̂1,k−τ−2, · · · ,−x̂1,k−τ−n,f(uk−τ−1), ˆ̄uk−τ−2, · · · , ˆ̄uk−τ−n,

v̂k−1, · · · , v̂k−nd
]T ∈ R

n1 .

Replacing the unknown coefficient γj in (3) with its estimate γ̂j,k gives

ˆ̄uk = γ̂1,kf1(uk) + γ̂2,kf2(uk) + · · · + γ̂m,kfm(uk). (39)

Replacing xk−τ , φk and d in (21) with their estimates x̂k−τ , φ̂k and d̂k, the estimate v̂k can be

computed by

v̂k = yk − cx̂k−τ − d̂
T

kφ̂k. (40)

Then we can summarize the following RLS algorithm for estimating the parameter vector θ as

θ̂k = θ̂k−1 + L1,k[yk − ϕ̂T
kθ̂k−1], (41)

L1,k = P 1,k−1ϕ̂k[1 + ϕ̂T
kP 1,k−1ϕ̂k]−1, (42)

P 1,k = [In1 − L1,kϕT
k]P 1,k−1, P 1,0 = p0In1, (43)

ϕ̂k = [−x̂1,k−τ−1,−x̂1,k−τ−2, · · · ,−x̂1,k−τ−n,f(uk−τ−1), ˆ̄uk−τ−2, · · · , ˆ̄uk−τ−n,

v̂k−1, · · · , v̂t−nd
]T, (44)

θ̂k = [â1,k, â2,k, · · · , ân,k, γ̂1,k, γ̂2,k, · · · , γ̂m,k, b̂2,k, · · · , b̂n,k, d̂1,k, · · · , d̂nd,k]T, (45)

ˆ̄uk = γ̂1,kf1(uk) + γ̂2,kf2(uk) + · · · + γ̂m,kfm(uk), (46)

v̂k = yk − cx̂k−τ − d̂
T

kφ̂k. (47)

For the unknown state x1,k, we also use the Kalmam filter algorithm to generate its estimate x̂1,k.

Combining Equations (41)–(47) and (13)–(19), we can get the Kalman-filter based recursive least

squares (KF-RLS) algorithm for identifying the Hammerstein state space systems.

To initialize the KF-RLS algorithm, the initial value θ̂0 and x̂1 is generally taken to be

a real vector, e.g., θ̂0 = 1n1
/p0 and x̂1 = 1n/p0 with p0 being normally a large positive

number (e.g., p0 = 106). Let x̂1,−i = 1/p0, ˆ̄u−i = 1/p0 and v̂−j = 1/p0 for i = 0, 1, 2, · · · , n, j =
0, 1, 2, · · · , nd − 1. The initial values of the covariance matrixes are set as P 1,0 = p0In1

, P 1 = In.

4. THE REDUNDANT RELS ALGORITHM FOR HAMMERSTEIN SYSTEMS WITH

UNKNOWN TIME-DELAY

Although we can predict the time-delay based on the empirical data in some special cases, there

are many uncertain varying elements which bring the unknown time-delay in the actual systems.

Besides identifying the system parameters, we also need to get the estimate of the time-delay based

on the observed data.

Reconsidering (11), if we extend the information vector ϕk and supplement the lost terms which

are omitted because of the time-delay. The information vector ϕ̄k is redefined as

ϕ̄k := [−x1,k−1,−x1,k−2, · · · ,−x1,k−τ ,−x1,k−τ−1,−x1,k−τ−2, · · · ,−x1,k−τ−n,f(uk−τ−1),

ūk−τ−2, · · · , ūk−τ−n, vk−1, vk−2, · · · , vk−nd
]T ∈ R

n1+τ .

At the same time, the parameter vector θ is extended as the following form:

θ̄ := [a01, a02, · · · , a0τ , a1, a2, · · · , an, γ1, γ2, · · · , γm, b2, b3, · · · , bn, d1, d2, · · · , dnd
]T ∈ R

n1+τ .
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The dimension of θ̄ is larger than the dimension of the original parameter vector θ because of

the redundant parameters {a01, a02, · · · , a0τ}. In fact, the true values of the redundant parameters

should be zeros to guarantee the model structure unchanged. So the number of the redundant

parameters is the value of the time-delay τ . Once the estimates of the redundant parameters lie

in a given confidence interval, we can assume them as zero. So the number of the continuous

approximate zero elements in the front part of the estimate of θ̄ is the estimate of the time-delay τ .

Then our objective is how to obtain the estimate ˆ̄θk of θ̄k.

Rewrite the model in (11) as

yk = ϕ̄T
kθ̄ + ek. (48)

Define a quadratic criterion function

J3(θ̄) :=
k

∑

j=1

[y(j) − ϕ̄T
j θ̄]2.

Minimizing J3(θ̄) and using the least squares principle, we can get the following relations:

ˆ̄θk = ˆ̄θk−1 + L2,k[yk − ϕ̄T
k
ˆ̄θk−1], (49)

L2,k = P 2,k−1ϕ̄k[1 + ϕ̄T
kP 2,k−1ϕ̄k]−1, (50)

P 2,k = [I − L2,kϕ̄T
k]P 2,k−1. (51)

Similarly, the information vector ϕ̄k contains the unknown x1,k−i, ūk−i and vk−j , the algorithm in

(49)–(51) cannot be implemented. Replace x1,k−i, ūk−i and vk−j in ϕ̄k with their corresponding

estimates x̂1,k−i, ˆ̄uk−i and v̂k−j at time k and define

ˆ̄ϕk := [−x̂1,k−1,−x̂1,k−2, · · · ,−x̂1,k−τ ,−x̂1,k−τ−1,−x̂1,k−τ−2, · · · ,−x̂1,k−τ−n,f(uk−τ−1),

ˆ̄uk−τ−2, · · · , ˆ̄uk−τ−n, v̂k−1, · · · , v̂k−nd
]T ∈ R

n1+τ .

Replacing ϕ̄k in (49)–(51) with its estimate ˆ̄ϕk, we can summarize the following recursive extended

least squares (RELS) algorithm for estimating θ̄:

ˆ̄θk = ˆ̄θk−1 + L2,k[yk − ˆ̄ϕT
k
ˆ̄θk−1], (52)

L2,k = P 2,k−1
ˆ̄ϕk[1 + ˆ̄ϕT

kP 2,k−1
ˆ̄ϕk]−1, (53)

P 2,k = [I − L2,k ˆ̄ϕT
k]P 2,k−1, (54)

ˆ̄ϕk = [−x̂1,k−1,−x̂1,k−2, · · · ,−x̂1,k−τ ,−x̂1,k−τ−1,−x̂1,k−τ−2, · · · ,−x̂1,k−τ−n, · · · ,

f(uk−τ−1), ˆ̄uk−τ−2, ˆ̄uk−τ−n, v̂k−1, · · · , v̂k−nd
]T, (55)

ˆ̄θk = [â01,k, â02,k, · · · , â0τ,k, â1,k, â2,k, · · · , ân,k, γ̂1,k, · · · , γ̂m,k, b̂2,k, · · · , b̂n,k, d̂1,k, · · · , d̂nd,k]T,

(56)

ˆ̄uk = γ̂1,kf1(uk) + γ̂2,kf2(uk) + · · · + γ̂m,kfm(uk), (57)

v̂k = yk − cx̂k−τ − d̂
T

kφ̂k. (58)

Combining (52)–(58) and (13)–(19), the Kalman-filter based recursive extended least squares (KF-

RELS) algorithm for estimating θ̄ is obtained. Then the value of the time-delay τ can be evaluated

by counting how many elements which are close to zero in the front part of ˆ̄θk.

The steps for computing the state and parameter estimates x̂k and ˆ̄θk under the KF-RELS

algorithm with the increasing of k are as follows.

1. To initialize. Let k = 1, the initial value ˆ̄θ0 and x̂1 is generally taken to be a real vector,

e.g., θ̂0 = 1n1+τ/p0 and x̂1 = 1n/p0. Let x̂1,−i = 1/p0, ˆ̄u−i = 1/p0 and v̂−j = 1/p0 (i =
0, 1, 2, · · · , j = 0, 1, 2, · · · , nd − 1). The initial values of the covariance matrixes are set as:

P̄ 0 = p0In1+τ , P 1 = In. Give a small positive ε.
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2. Collect the input-output data, construct the information vector ϕ̂k by (55).

3. Compute the gain vector L2,k and the covariance matrix P 2,k by (53) and (54).

4. Update the parameter estimates ˆ̄θk by (52).

5. Construct the matrix Âk by (18), and the vector b̂k by (19).

6. Compute the prior estimate x̄k+1 and the covariance matrix P̄ k by (13) and (14).

7. Compute the Kalman gain Lk by (15), update the posterior state estimate x̂k+1 by (16) and

the posterior covariance matrix P k+1 by (17).

8. Update the estimates ˆ̄uk and v̂k by (57) and (58).

9. Evaluate the relative error of parameter estimates, if

δ = ‖ˆ̄θk − ˆ̄θk−1‖ 6 ε

for some pre-set small ε, then terminate this procedure and obtain the parameter estimate ˆ̄θk

and the state estimate x̂k+1; otherwise, increase k by 1 and go to Step 2.

5. EXAMPLE

Example 1: Consider the following Hammerstein system with state space model:

xk+1 = Axk + būk + wk,

yk = cxt−τ − 0.30vk−1 + vk,

ūk = γ1uk + γ2u
2
k + γ3u

3
k,

A =

[

−0.50 1
−0.26 0

]

, b =

[

1
1.50

]

,

c = [1, 0],

γ = [0.25, 0.60, 0.76].

In simulation, the input {uk} is taken as a persistent excitation sequence with zero mean and

unit variance, and {wk}, {vk} as uncorrelated noise sequences with zero mean and variances

Q :=

[

σ2
w 0
0 σ2

w

]

and R := σ2
v , respectively. The output time-delay τ = 2. Using the KF-LSI

algorithm and KF-RLS algorithm to estimate the parameters of this model, the parameter estimates

and their estimation errors δ := ‖θ̂k − θ‖/‖θ‖ with different noise variances are shown in Tables I–
II. In the KF-LSI algorithm, the data length L = 1000.
To show the advantage of Kalman filter in obtaining the estimates of unknown states, the state

observer (SO) is also used to get the estimates of the unknown system states. Combining the SO with

the LSI and RLS algorithm to get the SO-LSI estimates and the SO-RLS estimates. The estimation

errors versus s or k are plotted in Figure 3 and Figure 4.

From Tables I–III and Figures 3–4, we can draw the following conclusions.

1. It is clear see that the estimation errors δ are becoming smaller (in general) as s or k
increasing. This indicates that the proposed KF-LSI and KF-RLS algorithms are effective

for Hammerstein state space systems.

2. A smaller noise variance leads to smaller parameter estimation errors under the same data

length in the KF-LSI and KF-RLS algorithm.

3. The proposed KF-LSI and KF-RLS algorithm have better performances on estimation

accuracy than the SO-LSI and SO-RLS estimation algorithm.

For comparison, we use the state observer based hierarchical stochastic gradient (SO-HSG)

algorithm and the hierarchical multi-innovation stochastic gradient (SO-HMISG) algorithm in [31]

and the state observer based hierarchical least squares (SO-HLS) algorithm in [32] to identify this

model. In order to acquire the unique estimate, they assume that the norm of the coefficient vector

γ is unity and the first coefficient is positive, i.e., ‖γ‖2 = 1 and γ1 > 0. The root mean square error
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(RMSE),

RMSE =

√

√

√

√

L
∑

j=1

[yj − ŷj ]2/L

is employed to reflect the errors between the predicted values and true values. Using the Monte

Carlo simulations with 100 set of noise realizations, the RMSE and its bias of the five different

algorithms are summarized in Table III. The results of self-validation and cross-validation of the

discussed different algorithms are shown in Figures 5 and 6.

From Figures 5–6 and Table III, we can see that 1) the KF-LSI algorithm has the smallest RMSE

in the self-validation and cross validation, 2) the KF-RLS algorithm has better performances in

prediction than other algorithms, 3) the RMSE of the SO-HSG algorithm is obvious larger than

those of other four algorithms, by extending the length of the innovation, the SO-HMISG algorithm

can enhance the accuracy of parameter estimation.

Table I. The KF-LSI parameter estimates and errors versus s

σ2 s a1 a2 γ1 γ2 γ3 b2 d1 δ (%)
σ2

w = 0.022 1 0.50024 0.26313 0.24944 0.59815 0.75849 1.49801 -0.00523 15.41463
σ2

v = 0.22 2 0.51093 0.26052 0.24857 0.59917 0.75988 1.50482 -0.25617 2.37727
5 0.50822 0.26122 0.24882 0.59880 0.75964 1.50185 -0.29186 0.62240
10 0.50822 0.26121 0.24882 0.59875 0.75964 1.50184 -0.29185 0.62308
15 0.50822 0.26121 0.24882 0.59876 0.75964 1.50184 -0.29185 0.62308

σ2
w = 0.052 1 0.50088 0.27553 0.24811 0.59074 0.75278 1.49015 -0.02357 14.49929

σ2
v = 1.002 2 0.50629 0.28097 0.24377 0.58957 0.75995 1.50340 -0.27305 1.93178

5 0.50402 0.27903 0.24510 0.59069 0.75864 1.49624 -0.29440 1.21077
10 0.50402 0.27897 0.24509 0.59063 0.75863 1.49619 -0.29440 1.21021
15 0.50402 0.27897 0.24509 0.59064 0.75863 1.49619 -0.29440 1.21016

True values 0.50000 0.26000 0.25000 0.60000 0.76000 1.50000 -0.30000

Table II. The KF-RLS parameter estimates and errors versus k

σ2 k a1 a2 γ1 γ2 γ3 b2 d1 δ (%)
σ2

w = 0.022 100 0.51279 0.24805 0.25026 0.57382 0.74856 1.52813 -0.25841 3.15621
σ2

v = 0.22 200 0.50853 0.26082 0.24446 0.59100 0.76103 1.51115 -0.24533 3.00345
500 0.51223 0.25741 0.24892 0.60433 0.76192 1.49441 -0.24093 3.18044
1000 0.50970 0.25894 0.25265 0.60038 0.75789 1.49877 -0.24867 2.73861
2000 0.50929 0.26090 0.25178 0.59864 0.75763 1.50310 -0.26989 1.66526
3000 0.50774 0.25906 0.24794 0.60148 0.76008 1.50219 -0.27050 1.60483

σ2
w = 0.052 100 0.49437 0.15277 -0.33553 0.65580 1.00088 1.36885 -0.12603 35.57776

σ2
v = 1.002 200 0.53590 0.20030 0.13232 0.61041 0.76896 1.43699 -0.21827 8.98682

500 0.50483 0.24569 0.22204 0.60475 0.74398 1.42952 -0.25032 4.88400
1000 0.49799 0.24748 0.24848 0.61428 0.75588 1.43737 -0.23780 4.72763
2000 0.49988 0.26124 0.23658 0.61713 0.76864 1.46757 -0.25904 2.99454
3000 0.49521 0.25721 0.25604 0.59299 0.75929 1.47596 -0.27036 2.07397

True values 0.50000 0.26000 0.25000 0.60000 0.76000 1.50000 -0.30000

Example 2: Consider a following Hammerstein system with unknown time-delay:

xk+1 = Axk + būk + wk,

yk = cxt−τ − 0.18vk−1 + vk,

ūk = γ1sin(uk) + γ2cos(uk),

A =

[

−0.45 1
−0.30 0

]

, b =

[

1
1.50

]

, c = [1, 0],

γ = [1.20, −0.32].
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Table III. The RMSE and its bias of different algorithms based on 100 Monte Carlo runs (σ2
w = 0.02

2,

σ
2
v = 0.20

2)

RMSE
Algorithm Self-validation Cross-validation
KF-LSI 0.22374±0.00706 0.22602±0.02726
KF-RLS 0.23852±0.00708 0.26681±0.02815
SO-HSG 1.28185±0.24508 1.12947±0.13251
SO-HMISG(p=6) 0.30017±0.29869 0.35248±0.10866
SO-HLS 0.27849±0.10688 0.36280±0.05659
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Figure 3. The SO-LSI and KF-LSI estimation errors δ versus s (σ2
w = 0.02

2, σ2
v = 0.20

2)
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Figure 4. The SO-RLS and KF-RLS estimation errors δ versus k (σ2
w = 0.02

2, σ2
v = 0.20

2)

Take the same simulation conditions as those in Example 1 and let σ2
w = 0.022 and σ2

v = 0.202.

Using the KF-RELS algorithm to estimate the parameters, states and time-delay of this system, the

parameter estimates and their estimation errors are shown in Table IV. Give a confidence interval

[−0.005, 0.005] for the redundant parameters. Checking the last second line in Table IV, we can find

there are two elements which can be assumed as zero. So the time-delay τ equals 2.
As a comparison, use the state observer to estimate the unknown system states again. Combining

it with the RELS algorithm to get the SO-RELS estimates. The parameter estimates and their
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Figure 5. A section of the self-validation of different algorithms (σ2
w = 0.02
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v = 0.20
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Figure 6. A section of the cross-validation of different algorithms (σ2
w = 0.02

2, σ2
v = 0.20

2)

estimation errors are also shown in Table IV. From Table IV, we can see that the KF-RELS algorithm

generates better estimates than the SO-RELS algorithm.

For model validation, a different dataset (Le = 200 samples from t = 3001 to 3200) and the

estimated model obtained by the KF-RELS algorithm are used. The predicted output and the true

output under the KF-RELS algorithm are plotted in Figure 7. The true states and the estimated states

are compared in Figure 8. From Figures 7–8, we can draw the following conclusions.

1. The model outputs can fit the true outputs well, the KF-RELS algorithm can capture the

dynamic system well.

2. The estimated states are very close to the true states, the parameter estimates based Kalman

filter can generate highly accurate state estimates.

6. CONCLUSIONS

A Kalman filter based least squares iterative algorithm and recursive least squares algorithm are

developed for Hammerstein systems with dynamic state space model. The process noise is assumed

to be white noise, the measurement noise is fitted by the moving average noise. For the unknown
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Table IV. The SO-RELS and KF-RELS parameter estimates and errors versus k

Algorithm k a01 a02 a1 a2 γ1 γ2 b2 d1 δ (%)
SO-RELS 100 0.02795 0.18176 0.48168 -0.20607 1.45273 -0.47187 1.51377 -0.27369 16.61618

200 0.01253 0.15293 0.47055 -0.23135 1.43085 -0.41217 1.45089 -0.27925 13.90675
500 0.00365 0.12384 0.47863 -0.25194 1.39700 -0.38491 1.40655 -0.28999 12.30822
1000 -0.00232 0.10862 0.48803 -0.26634 1.36120 -0.36924 1.41128 -0.29300 10.67716
2000 0.00346 0.08652 0.47877 -0.27692 1.33084 -0.35337 1.39472 -0.26988 8.79811
3000 0.00633 0.07844 0.48158 -0.28087 1.32018 -0.35446 1.40312 -0.25708 7.95681

KF-RELS 100 0.03284 0.03973 0.49893 -0.20725 1.21083 -0.45434 1.30588 -0.32613 13.40018
200 0.02832 0.04168 0.49727 -0.27377 1.26652 -0.37328 1.39482 -0.23716 6.44682
500 0.00907 0.04078 0.49278 -0.29927 1.27048 -0.34336 1.42444 -0.20737 4.69370
1000 -0.00230 0.02711 0.49244 -0.30931 1.23701 -0.32881 1.43377 -0.19160 3.06655
2000 0.00198 0.00730 0.48081 -0.31664 1.21497 -0.31732 1.41960 -0.17097 2.49090
3000 0.00442 -0.00050 0.48446 -0.31938 1.20665 -0.31978 1.42942 -0.16938 2.32384

True values 0.00000 0.00000 0.45000 -0.30000 1.20000 -0.32000 1.50000 -0.18000
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Figure 7. The KF-RELS predicted output and true output versus k
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Figure 8. The state xk and estimated estimate x̂k versus k

time-delay in the output block, a Kalman filter based recursive extended least squares algorithm

is derived. Based on the proposed algorithms, the combined state and parameter estimation are
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obtained. The proposed algorithms can be extended to other system identification models, e.g., the

linear state space models, and Wiener models [41,42] and Hammerstein-Wiener systems [43,44] or

applied to nonlinear systems [45, 46] and other fields [47, 48, 49].

7. ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No. 61273194),

the Graduate Education Innovation Program of Jiangsu Province (No. KYLX16 0780) and the 111

Project (B12018).

REFERENCES

1. van der Veen G, van Wingerden JW, Verhaegen M. Global identification of wind turbines using a Hammerstein
identification method. IEEE Transactions on Control Systems Technology 2013; 21(4): 1471–1478.

2. Wang J, Zhang Q. Detection of asymmetric control valve stiction from oscillatory data using an extended
Hammerstein system identification method. Journal of Process Control 2014; 24(1): 1–12.

3. Kim J, Konstantinou K. Digital predistortion of wideband signals based on power amplifier model with memory.
IEE Electronics Letters 2001; 37: 1417–1418.

4. Zhang LM, Hua CC, Guan XP. Structure and parameter identification for Bayesian Hammerstein system. Nonlinear
Dynamics 2015; 79(3): 1847–1861.

5. Chen J, Wang XP. Identification of Hammerstein systems with continuous nonlinearity. Information Processing
Letters 2015; 115(11): 822–827.

6. Zhao S, Huang B, Liu F. Minimum variance unbiased FIR filter for discrete time-variant systems. Automatica 2015;
53(3): 355-361.

7. Zhao S, Shmaliy YS, Liu F. Fast Kalman-like optimal unbiased FIR filtering with applications. IEEE Transactions
on Signal Processing 2016; 64(9): 2284-2297.

8. Wang DQ, Zhang W. Improved least squares identification algorithm for multivariable Hammerstein systems.
Journal of the Franklin Institute 2015; 352(11): 5292–5307.

9. Chen HB, Xiao YS, Ding F. Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear
systems using the key term separation principle. Applied Mathematics and Computation 2014; 247: 1202–1210.

10. Liu Y, Bai EW. Iterative identification of Hammerstein systems. Automatica 2007; 43(2): 346–354.
11. Wang XX, Liang Y, Pan Q, Zhao CH, Yang F. Nonlinear gaussian smoothers with colored measurement noise. IEEE

Transactions on Automatic Control 2015; 60(3): 870–876.
12. Roopa S, Narasimhan SV, Babloo B. Steiglitz–McBride adaptive notch filter based on a variable-step-size LMS

algorithm and its application to active noise control. International Journal of Adaptive Control and Signal Processing
2016; 30(1): 16–30.

13. Xu L, Ding F. Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for
signal modeling. Circuits, Systems and Signal Processing 2017; 36. doi: 10.1007/s00034-016-0378-4

14. Huang J, Shi Y, Huang HN, Li Z. l-2–l-infinity filtering for multirate nonlinear sampled-data systems using T-S
fuzzy models. Digital Signal Processing 2013; 23(1): 418–426.

15. Wang YJ, Ding F. Novel data filtering based parameter identification for multiple-input multiple-output systems
using the auxiliary model. Automatica 2016; 71: 308–313.

16. Wang YJ, Ding F. The filtering based iterative identification for multivariable systems. IET Control Theory and
Applications 2016; 10(8): 894–902.

17. Wang YJ, Ding F. The auxiliary model based hierarchical gradient algorithms and convergence analysis using the
filtering technique. Signal Processing 2016; 128: 212–221.

18. Hu YB, Liu BL, Zhou Q, Yang C. Recursive extended least squares parameter estimation for Wiener nonlinear
systems with moving average noises. Circuits, Systems, and Signal Processing 2014; 33(2): 655–664.

19. Li JH. Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Applied
Mathematics Letters 2013; 26(1): 91–96.

20. Ding J, Lin JX. Modified subspace identification for periodically non-uniformly sampled systems by using the lifting
technique. Circuits, Systems, and Signal Processing 2014; 33(5): 1439–1449.

21. Uzinski JC, Paiva HM, Duarte MA, Galvão RK, Villarreal F. A state-space description for perfect-reconstruction
wavelet FIR filter banks with special orthonormal basis functions. Journal of Computational and Applied
Mathematics 2015; 290: 290–297.

22. Yan LP, Jiang L, Xia YQ, Fu MY. State estimation and data fusion for multirate sensor networks. International
Journal of Adaptive Control and Signal Processing 2016; 30(1): 3–15.

23. Ding F, Liu XM, Ma XY. Kalman state filtering based least squares iterative parameter estimation for observer
canonical state space systems using decomposition. Journal of Computational and Applied Mathematics 2016; 301:
135–143.

24. Zhang H, Shi Y, Wang JM. On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian
jump system approach. IEEE Transactions on Fuzzy Systems 2014; 22(1): 212–222.

25. Zhao S, Huang B, Liu F. Linear optimal unbiased filter for time-variant systems without apriori information on initial
condition. IEEE Transactions on Automatic Control 2016; doi: 10.1109/TAC.2016.2557999.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
Prepared using acsauth.cls DOI: 10.1002/acs



COMBINED STATE AND PARAMETER ESTIMATION 17

26. Ding F, Liu XM, Gu Y. An auxiliary model based least squares algorithm for a dual-rate state space system with
time-delay using the data filtering. Journal of the Franklin Institute 2016; 353(2): 398–408.

27. Chen L, Han LL, Huang B, Liu F. Parameter estimation for a dual-rate system with time delay. ISA transactions
2014; 53(5): 1368–1376.

28. Xie L, Yang HZ. Gradient based iterative identification for nonuniform sampling output error systems, Journal of
Vibration and Control 2011; 17(3): 471–478.

29. Schön TB, Wills A, Ninness B. System identification of nonlinear state-space models. Automatica 2011; 47(1):
39–49.

30. Deng J, Huang B. Identification of nonlinear parameter varying systems with missing output data. AIChE Journal
2012; 58(11): 3454–3467.

31. Wang XH, Ding F. Recursive parameter and state estimation for an input nonlinear state space system using the
hierarchical identification principle. Signal Processing 2015; 117: 208–218.

32. Wang DQ, Ding F, Liu XM. Least squares algorithm for an input nonlinear system with a dynamic subspace state
space model. Nonlinear Dynamics 2014; 75(1-2): 49–61.

33. Wang XH, Ding F. Joint estimation of states and parameters for an input nonlinear state-space system with colored
noise using the filtering technique. Circuits, Systems, and Signal Processing 2015; 35(2): 481–500.

34. Vörös J. Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics. IEEE
Transactions on Automatic Control 2002; 47(1): 184–188.

35. Vörös J. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones.
IEEE Transactions on Automatic Control 2003; 48(12): 2203–2206.

36. Pan J, Yang XH, Cai HF, Mu BX. Image noise smoothing using a modified Kalman filter. Neurocomputing 2016;
173: 1625–1629.

37. Xu L. The damping iterative parameter identification method for dynamical systems based on the sine signal
measurement, Signal Processing 120 (2016) 660-667.

38. Xu L. Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. Journal of
Computational and Applied Mathematics 2015; 288: 33–43.

39. Xu L, Chen L, Xiong WL. Parameter estimation and controller design for dynamic systems from the step responses
based on the Newton iteration. Nonlinear Dynamics 2015; 79(3): 2155-2163.

40. Xu L. A proportional differential control method for a time-delay system using the Taylor expansion approximation.
Applied Mathematics and Computation 2014; 236: 391–399.

41. Ding F, Liu XM, Liu MM. The recursive least squares identification algorithm for a class of Wiener nonlinear
systems. Journal of the Franklin Institute 2016; 353(7): 1518–1526.

42. Ding F, Wang XH, Chen QJ, Xiao YS. Recursive least squares parameter estimation for a class of output nonlinear
systems based on the model decomposition. Circuits, Systems and Signal Processing 2016; 35(9): 3323–3338.

43. Wang YJ, Ding F. Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using
the data filtering. Nonlinear Dynamics 2016; 84(2): 1045–1053.

44. Wang YJ, Ding F. Recursive parameter estimation algorithms and convergence for a class of nonlinear systems with
colored noise. Circuits, Systems and Signal Processing 2016; 35(10): 3461–3481.

45. Li H, Shi Y, Yan W. On neighbor information utilization in distributed receding horizon control for consensus-
seeking. IEEE Transactions on Cybernetics 2016; doi: 10.1109/TCYB.2015.2459719

46. Li H, Shi Y, YanW. Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed
γ-gain stability. Automatica 2016; 68: 148–154.

47. Wang TZ, Qi J, Xu H, et al. Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA
Transactions 2016; 60: 156–163.

48. Wang TZ, Wu H, Ni MQ, et al. An adaptive confidence limit for periodic non-steady conditions fault detection.
Mechanical Systems and Signal Processing 2016; 72-73: 328–345.

49. Feng L, Wu MH, Li QX, et al. Array factor forming for image reconstruction of one-dimensional nonuniform
aperture synthesis radiometers. IEEE Geoscience and Remote Sensing Letters 2016; 13(2): 237–241.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
Prepared using acsauth.cls DOI: 10.1002/acs


