30 research outputs found

    Oxidation-induced Cu coating on steel surface

    Get PDF
    Abstract. Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristics are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150℃. However, the copper was separately scattered in and under the surface rust after heating at 1000℃. The forming mechanisms of copper coating are discussed in detail. By choosing a proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no bonding problem

    ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation

    Full text link
    In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    Development of an Accurate and Automated Quality Inspection System for Solder Joints on Aviation Plugs Using Fine-Tuned YOLOv5 Models

    No full text
    The quality inspection of solder joints on aviation plugs is extremely important in modern manufacturing industries. However, this task is still mostly performed by skilled workers after welding operations, posing the problems of subjective judgment and low efficiency. To address these issues, an accurate and automated detection system using fine-tuned YOLOv5 models is developed in this paper. Firstly, we design an intelligent image acquisition system to obtain the high-resolution image of each solder joint automatically. Then, a two-phase approach is proposed for fast and accurate weld quality detection. In the first phase, a fine-tuned YOLOv5 model is applied to extract the region of interest (ROI), i.e., the row of solder joints to be inspected, within the whole image. With the sliding platform, the ROI is automatically moved to the center of the image to enhance its imaging clarity. Subsequently, another fine-tuned YOLOv5 model takes this adjusted ROI as input and realizes quality assessment. Finally, a concise and easy-to-use GUI has been designed and deployed in real production lines. Experimental results in the actual production line show that the proposed method can achieve a detection accuracy of more than 97.5% with a detection speed of about 0.1 s, which meets the needs of actual productio

    Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades

    No full text
    To study the output power and wake flow characteristics of a wind turbine with swept blades, taking the blade tip offset and the location of the sweep start as two variables, the straight blade of the DTU-LN221 baseline airfoil was optimally designed with sweep. Then the designed wind turbine was numerically simulated, and the swept blade with the best optimal output power characteristics was selected for the wind tunnel test. The results indicate that for both forward and backward swept blades, increasing the blade tip offset and the sweep start location could decrease the power and thrust coefficients. Compared with the backward swept design, the forward swept design significantly improved the blades’ power characteristics. By adopting swept blades instead of straight blades, wind turbines could generate more power at high tip speed ratios, especially in yaw conditions. The streamwise velocity recovery of the wind turbine with swept blades was slower than that with straight blades as the lateral velocity near the wake region was higher than that with straight blades. Besides, the wind turbine with swept blades had a greater turbulence intensity of the wake near the wake center than that with straight blades with or without yaw condition

    Balancing Strength and Ductility in Al Matrix Composites Reinforced by Few-Layered MoS2 through In-Situ Formation of Interfacial Al12Mo

    No full text
    In this work, few-layered MoS2 (FLM) nanosheet-reinforced Al matrix composites are developed through powder metallurgy and hot extrusion. The microstructure, mechanical properties, and strengthening mechanisms have been systematically investigated. It is found that Al12Mo and Al2S3 can be formed in-situ during the sintering process, resulting in the improvement of interfacial bonding between FLM and Al matrix. With 1.5 wt.% of FLM addition, an improved tensile strength of 234 MPa with a high elongation of 17% can be obtained. Moreover, the strengthening mechanisms are also demonstrated to be grain refinement, dislocation strengthening, and load transfer, and the calculation indicates that load transfer is the main contribution factor. This work will inspire more new designs of metal matrix composites with balanced strength and ductility

    Large-Scale Characteristic Mode Analysis With Fast Multipole Algorithms

    No full text
    corecore