20 research outputs found

    Butanol production in a first-generation Brazilian sugarcane biorefinery: Technical aspects and economics of greenfield projects

    Get PDF
    AbstractThe techno-economics of greenfield projects of a first-generation sugarcane biorefinery aimed to produce ethanol, sugar, power, and n-butanol was conducted taking into account different butanol fermentation technologies (regular microorganism and mutant strain with improved butanol yield) and market scenarios (chemicals and automotive fuel). The complete sugarcane biorefinery with the batch acetone–butanol–ethanol (ABE) fermentation process was simulated using Aspen Plus®. The biorefinery was designed to process 2million tonne sugarcane per year and utilize 25%, 50%, and 25% of the available sugarcane juice to produce sugar, ethanol, and butanol, respectively. The investment on a biorefinery with butanol production showed to be more attractive [14.8% IRR, P(IRR>12%)=0.99] than the conventional 50:50 (ethanol:sugar) annexed plant [13.3% IRR, P(IRR>12%)=0.80] only in the case butanol is produced by an improved microorganism and traded as a chemical

    Environmental impacts of technology learning curve for cellulosic ethanol in Brazil

    No full text
    This study presents a Life Cycle Assessment of second-generation ethanol production in Brazil considering current and future technologies to represent its technology evolution, compared to the first-generation process. With the start of the learning curve of the cellulosic ethanol production, improvements are expected on both biomass industrial conversion and agricultural production phases. Increased sugarcane yields and gradual introduction of more productive varieties, such as energy cane, are expected, affecting both first- and second-generation ethanol production processes. In environmental impact categories very relevant in the biofuel production debate, such as climate change, fossil depletion and agricultural land occupation, scenarios with second-generation process present lower impacts than first-generation process for the same time horizon. There is a trend of reduction of environmental impacts over time, reflecting the environmental advantages due to advances on the learning curve of second-generation ethanol technology and on biomass production system. The contribution of second-generation ethanol production will be extremely relevant to help Brazil to meet its targets in the international environmental agreements.1063139FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2010/17139-3; 2011/51902-

    Butanol Production In A First-generation Brazilian Sugarcane Biorefinery: Technical Aspects And Economics Of Greenfield Projects.

    No full text
    The techno-economics of greenfield projects of a first-generation sugarcane biorefinery aimed to produce ethanol, sugar, power, and n-butanol was conducted taking into account different butanol fermentation technologies (regular microorganism and mutant strain with improved butanol yield) and market scenarios (chemicals and automotive fuel). The complete sugarcane biorefinery with the batch acetone-butanol-ethanol (ABE) fermentation process was simulated using Aspen Plus®. The biorefinery was designed to process 2 million tonne sugarcane per year and utilize 25%, 50%, and 25% of the available sugarcane juice to produce sugar, ethanol, and butanol, respectively. The investment on a biorefinery with butanol production showed to be more attractive [14.8% IRR, P(IRR>12%)=0.99] than the conventional 50:50 (ethanol:sugar) annexed plant [13.3% IRR, P(IRR>12%)=0.80] only in the case butanol is produced by an improved microorganism and traded as a chemical.135316-2

    Utilization Of Pentoses From Sugarcane Biomass: Techno-economics Of Biogas Vs. Butanol Production.

    No full text
    This paper presents the techno-economics of greenfield projects of an integrated first and second-generation sugarcane biorefinery in which pentose sugars obtained from sugarcane biomass are used either for biogas (consumed internally in the power boiler) or n-butanol production via the ABE batch fermentation process. The complete sugarcane biorefinery was simulated using Aspen Plus®. Although the pentoses stream available in the sugarcane biorefinery gives room for a relatively small biobutanol plant (7.1-12 thousand tonnes per year), the introduction of butanol and acetone to the product portfolio of the biorefinery increased and diversified its revenues. Whereas the IRR of the investment on a biorefinery with biogas production is 11.3%, IRR varied between 13.1% and 15.2% in the butanol production option, depending on technology (regular or engineered microorganism with improved butanol yield and pentoses conversion) and target market (chemicals or automotive fuels). Additional discussions include the effects of energy-efficient technologies for butanol processing on the profitability of the biorefinery.142390-

    Techno-economic Analysis And Climate Change Impacts Of Sugarcane Biorefineries Considering Different Time Horizons

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). Results: Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. Conclusions: This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.10Sao Paulo Research Foundation (Fapesp)Ministry of Science, Technology, Innovation and Communications (MCTIC)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Production of butanol and other high valued chemicals using ethanol as feedstock integrated to a first and second generation sugarcane distillery

    No full text
    Production of chemicals and second generation ethanol from lignocellulosic material integrated to first generation sugarcane biorefineries presents potential for industrial implementation, since significant part of the infrastructure may be shared between both first and second generation plants. Additionally, chemicals from renewable resources have attracted increasing attention, mainly for their market prices (usually higher than commodities as biofuels) and potential for replacing oil-based products used as feedstock in the chemical industry. The production of chemicals through the alcoholchemistry route uses catalysts to convert ethanol into desired products according to catalysts activity and selectivity. One of the possibilities in the alcohol chemistry route is to use ethanol to produce n-butanol that can be sold as feedstock for the chemical industry and as drop-in biofuel for gasoline powered engines. Due to catalyst selectivity, this process generates also other chemicals, which can be purified to be sold as feedstock for the chemical industry. Previous studies have pointed out that the use of ethanol in a biorefinery to produce n-butanol presents good economic and environmental impacts. Nevertheless, results obtained for the economic return of the n-butanol biorefinery compared to autonomous ethanol plants were very similar, which can be unattractive for investors dealing with the high risks involved in a novel biorefinery process. In this work, the possibility of enhancing the financial and environmental impacts of n-butanol and other high value chemicals production integrated to a second generation sugarcane biorefinery is explored. Computer simulation is used to quantify the influence of technical parameters, including down-stream operations required to separate coproducts, adding value to the mix of products and commercial flexibility. Risk analysis is used to evaluate uncertain parameters such as the investments in n-butanol and second generation ethanol plants and the market prices assumed for the new products. Results obtained show that production of n-butanol and other high valued chemicals integrated to a first and second generation sugarcane biorefinery could be an economically and environmentally attractive alternative. However, the financial risk involved is high and hugely dependent on the selling prices of the new products of the portfolio investigated in this work, mainly n-butanol37805810CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãoInternational Conference on BioMass (iconBM 2014

    Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part I: Integration to a first generation sugarcane distillery

    No full text
    Butanol production from renewable resources has been increasingly investigated over the past decade, mostly for its use as a liquid biofuel for road transportation, since its energy density is higher than that of ethanol and it may be used in gasoline driven engines with practically no changes, but also for use as a feedstock in the chemical industry. Most of the research concerning butanol production focuses on the ABE process (fermentation of sugars into a mixture of acetone, butanol and ethanol), which has several drawbacks regarding microorganism performance and product inhibition. An alternative to ABE fermentation, ethanol catalytic conversion to butanol can produce a higher quality product with less retrofitting than ABE in existing ethanol producing facilities. There are different types of catalysts for the chemical conversion of ethanol to butanol being developed in laboratory scale, but their actual use in a sugarcane processing plant has never before been assessed. Butanol production from ethanol in a sugarcane biorefinery, using data from the literature, was assessed in this study; different technological alternatives (catalytic routes) were evaluated through computer simulation in Aspen Plus (including production of electricity, sugar, ethanol and other products) and economic and environmental impacts were assessed. Results indicate that vapor-phase catalysis presents higher potential for industrial implementation, and commercialization of butanol for use as a chemical feedstock has an economic performance similar to that of current, optimized first generation sugarcane distilleries, but can potentially contribute to cost reduction that will allow commercialization of butanol as a fuel in the future92814411451CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP476168/2013-92011/19396-6; 2012/15192-0; 2010/17139-

    Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery

    No full text
    Production of second generation ethanol and other added value chemicals from sugarcane bagasse and straw integrated to first generation sugarcane biorefineries presents large potential for industrial implementation, since part of the infrastructure where first generation ethanol is produced may be shared between both plants. In this context, butanol from renewable resources has attracted increasing interest, mostly for its use as a drop in liquid biofuel for transportation, since its energy density is greater than that of ethanol, but also for its use as feedstock in the chemical industry. In this paper, vapor-phase catalytic production of butanol from first and second generation ethanol in a sugarcane biorefinery was assessed, using data available from the literature. The objective is to evaluate the potential of butanol either as fuel or feedstock for industry, taking into account economical/environmental issues through computer simulation. The results obtained show that, although promising, butanol sold as chemical has a limited market and as fuel presents economic constraints. In addition, investments on the butanol conversion plant could be an obstacle to its practical implementation. Nevertheless, environmental assessment pointed out advantages of its use as fuel for road transportation, if compared with gasoline in terms of global environmental impacts such as global warming92814521462CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP476168/2013-92011/19396-6; 2010/17139-3; 2012/15192-
    corecore