74 research outputs found

    Experimental Study on Key Generation for Physical Layer Security in Wireless Communications

    Get PDF
    This paper presents a thorough experimental study on key generation principles, i.e., temporal variation, channel reciprocity, and spatial decorrelation, through a testbed constructed by using wireless open-access research platform. It is the first comprehensive study through: 1) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber, and an indoor office environment, which represents little, rich, and moderate multipath, respectively; 2) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; and 3) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial to key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform

    Comprehensive Network Analysis Reveals Alternative Splicing-Related lncRNAs in Hepatocellular Carcinoma

    Get PDF
    © Copyright © 2020 Wang, Wang, Bhat, Chen, Xu, Mo, Yi and Zhou. It is increasingly appreciated that long non-coding RNAs (lncRNAs) associated with alternative splicing (AS) could be involved in aggressive hepatocellular carcinoma. Although many recent studies show the alteration of RNA alternative splicing by deregulated lncRNAs in cancer, the extent to which and how lncRNAs impact alternative splicing at the genome scale remains largely elusive. We analyzed RNA-seq data obtained from 369 hepatocellular carcinomas (HCCs) and 160 normal liver tissues, quantified 198,619 isoform transcripts, and identified a total of 1,375 significant AS events in liver cancer. In order to predict novel AS-associated lncRNAs, we performed an integration of co-expression, protein-protein interaction (PPI) and epigenetic interaction networks that links lncRNA modulators (such as splicing factors, transcript factors, and miRNAs) along with their targeted AS genes in HCC. We developed a random walk-based multi-graphic (RWMG) model algorithm that prioritizes functional lncRNAs with their associated AS targets to computationally model the heterogeneous networks in HCC. RWMG shows a good performance evaluated by the ROC curve based on cross-validation and bootstrapping strategies. As a conclusion, our robust network-based framework has derived 31 AS-related lncRNAs that not only validates known cancer-associated cases MALAT1 and HOXA11-AS, but also reveals new players such as DNM1P35 and DLX6-AS1with potential functional implications. Survival analysis further provides insights into the clinical significance of identified lncRNAs

    Strong optical response and light emission from a monolayer molecular crystal

    Get PDF
    Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far, the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report a strong optical response in a class of monolayer molecular J-aggregates. The exciton exhibits giant oscillator strength and absorption (over 30% for monolayer) at resonance, as well as photoluminescence quantum yield in the range of 60-100%. We observe evidence of superradiance (including increased oscillator strength, bathochromic shift, reduced linewidth and lifetime) at room-temperature and more progressively towards low temperature. These unique properties only exist in monolayer owing to the large unscreened dipole interactions and suppression of charge-transfer processes. Finally, we demonstrate light-emitting devices with the monolayer J-aggregate. The intrinsic device speed could be beyond 30 GHz, which is promising for next-generation ultrafast on-chip optical communications

    The diploid genome sequence of an Asian individual

    Get PDF
    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics

    Empirical likelihood for non-degenerate U-statistics

    No full text
    Standard empirical likelihood for U-statistics is too computationally expensive. To overcome this computational difficulty, we reformulate the non-degenerate U-statistics as a sample mean of some "pseudo" observations in this paper, and show that the empirical log-likelihood ratio has an asymptotic chi-squared distribution under the second moment condition. The method is extremely simple to use, and yet provide better coverage accuracy in general than other alternative methods from our simulation studies.Empirical likelihood Confidence interval U-statistics

    Compact Transformer Tracker with Correlative Masked Modeling

    No full text
    Transformer framework has been showing superior performances in visual object tracking for its great strength in information aggregation across the template and search image with the well-known attention mechanism. Most recent advances focus on exploring attention mechanism variants for better information aggregation. We find these schemes are equivalent to or even just a subset of the basic self-attention mechanism. In this paper, we prove that the vanilla self-attention structure is sufficient for information aggregation, and structural adaption is unnecessary. The key is not the attention structure, but how to extract the discriminative feature for tracking and enhance the communication between the target and search image. Based on this finding, we adopt the basic vision transformer (ViT) architecture as our main tracker and concatenate the template and search image for feature embedding. To guide the encoder to capture the invariant feature for tracking, we attach a lightweight correlative masked decoder which reconstructs the original template and search image from the corresponding masked tokens. The correlative masked decoder serves as a plugin for the compact transformer tracker and is skipped in inference. Our compact tracker uses the most simple structure which only consists of a ViT backbone and a box head, and can run at 40 fps. Extensive experiments show the proposed compact transform tracker outperforms existing approaches, including advanced attention variants, and demonstrates the sufficiency of self-attention in tracking tasks. Our method achieves state-of-the-art performance on five challenging datasets, along with the VOT2020, UAV123, LaSOT, TrackingNet, and GOT-10k benchmarks. Our project is available at https://github.com/HUSTDML/CTTrack

    Jackknife Empirical Likelihood

    No full text
    Empirical likelihood has been found very useful in many different occasions. However, when applied directly to some more complicated statistics such as U-statistics, it runs into serious computational difficulties. In this paper, we introduce a so-called jackknife empirical likelihood (JEL) method. The new method is extremely simple to use in practice. In particular. the JEL is shown to be very effective in handling one and two-sample U-statistics. The JEL can be potentially useful for other nonlinear statistics
    corecore