50 research outputs found

    Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review.

    Get PDF
    Gastrointestinal (GI) cancers are one of the most common malignancies worldwide, with high rates of morbidity and mortality. Myeloid-derived suppressor cells (MDSCs) are major components of the tumor microenvironment (TME). MDSCs facilitate the transformation of premalignant cells and play roles in tumor growth and metastasis. Moreover, in patients with GI malignancies, MDSCs can lead to the suppression of T cells and natural killer cells. Accordingly, a better understanding of the role and mechanism of action of MDSCs in the TME will aid in the development of novel immune-targeted therapies

    Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set

    Get PDF
    BACKGROUND: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. METHODS: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan–Meier method. RESULTS: PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R(2) = 0.73 and R(2) = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). CONCLUSIONS: The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-016-0705-4) contains supplementary material, which is available to authorized users

    Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis

    Get PDF
    The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth

    Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Availability of data and materials GWAS summary data will be deposited at the EGG website (https://egg-consortium.org/) at publication. Individual study data are available from the corresponding author on reasonable request.Abstract Background: Head circumference is associated with intelligence and tracks from childhood into adulthood. Methods: We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age. Results: Seven loci reached genome-wide signifcance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes. Conclusions: The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics.Wellcome TrustSimons FoundationWellcome TrustMRC & WTUniversity of Southern DenmarkMax Planck core societ

    The association between income and psychotropic drug purchases: individual fixed effects analysis of annual longitudinal data in 2003–2013

    No full text
    Background: Previous cross-sectional studies show that low&nbsp;income&nbsp;is associated with poor&nbsp;mental health. However, longitudinal research has produced varying results. We assess whether low&nbsp;income&nbsp;is associated with increased psychotropic drug use after accounting for confounding by observed time-varying, and unobserved stable individual differences. Methods: The longitudinal register-based data comprises an 11% nationally representative random sample of Finnish residents aged 30&ndash;62 years between the years 2003 and 2013. The analytic sample includes 337,456 individuals (2,825,589 person&ndash;years). We estimate the association between annual&nbsp;income&nbsp;and psychotropic purchasing using ordinary-least-squares and&nbsp;fixed effects&nbsp;models, the latter controlling for all unobserved time-invariant individual characteristics. Results: The annual prevalence of psychotropic purchasing was 15%; 13% among men and 18% among women. Adjusted for age squared, sex and calendar year, the doubling of&nbsp;income&nbsp;decreased the probability of purchases by 4 percentage points (95% confidence interval: 4,4) in the ordinary-least-squares model. We observed no association after further adjusting for observed sociodemographic characteristics and unobserved individual differences in the&nbsp;fixed effects&nbsp;specification. Conclusions: Following adjustment for an extensive set of confounders, no contemporaneous association between variations in annual individual&nbsp;income&nbsp;and psychotropic drug purchasing was observed. Similar results were obtained irrespective of baseline&nbsp;income&nbsp;level and sex. The results imply that indirect selection based on preexisting individual characteristics plays a major role in explaining the association between variations in&nbsp;income&nbsp;measured over the short term, and psychotropic drug purchases. The association appears largely attributable to unobserved, stable individual characteristics. See video abstract at,&nbsp;http://links.lww.com/EDE/B463

    Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy

    No full text
    Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendrocytes in affected brain regions and there is evidence that α-synuclein released by neurons is taken up preferentially by oligodendrocytes. However, extracellular α-synuclein has also been shown to interact with other neural cell types, including astrocytes and microglia, as well as extracellular factors, mediating neuroinflammation, cell-to-cell spread and other aspects of pathogenesis. Here, we review the current evidence for how α-synuclein present in the extracellular milieu may act at the cell surface to drive components of disease progression. A more detailed understanding of the important extracellular interactions of α-synuclein with neuronal and non-neuronal cell types both in the brain and periphery may provide new therapeutic targets to modulate the disease process.We acknowledge NHMRC Dementia Teams Grant funding to RSC (APP1095215)
    corecore