22 research outputs found

    Temporal and Spatial Analyses of Spectral Indices of Nonthermal Emissions Derived from Hard X-Rays and Microwaves

    Get PDF
    We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and in microwaves. We analyzed 12 flares observed by the Hard X-ray Telescope aboard {\it Yohkoh}, Nobeyama Radio Polarimeters (NoRP), and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of hard X-rays and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap Δδ\Delta\delta between the electron spectral indices derived from hard X-rays δX\delta_{X} and those from microwaves δμ\delta_{\mu} (Δδ=δXδμ\Delta\delta = \delta_{X} - \delta_{\mu}) of about 1.6. Furthermore, from the start to the peak times of the HXR bursts, the time profiles of the HXR spectral index δX\delta_{X} evolve synchronously with those of the microwave spectral index δμ\delta_{\mu}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index δμ\delta_{\mu} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.Comment: 24 pages, 6 figures, accepted for publication in Ap

    女子自閉症スペクトラム障害の養育困難について : 母親インタビューから

    Get PDF
    ASD (autism spectrum disorder) has been studied mainly with regard to boys because it is more common in boys. Studies have shown that in girls, noticeable symptoms do not appear in childhood, and problems with human relationships appear from puberty onwards. In some cases, where children experience periods wherein they refuse to go to school or dysphoria, they are diagnosed of ASD. Interviews with mothers whose daughters have ASD revealed that it is absolutely necessary to be able to share difficulties about the child\u27s early upbringing and have continuous support from parents.自閉症スペクトラム障害(autism spectrum disorder,以下ASD)は男子に多いという性差があり,これまで男子を対象にした研究が主であった。女子は幼児期には特徴が目立たず,思春期頃から「人間関係の悩み」が出てくると言われる。それは不登校や抑うつとして出てくるが,受診するとASDであることが明らかになるケースがある。女子ASDの子どもを持つ母親への聞き取りから養育困難感をもち,一時的でなく,継続的に保護者への支援が必要であることが明らかになった

    Mechanism of Introduction of Exogenous Genes into Cultured Cells Using DEAE-Dextran-MMA Graft Copolymer as Non-Viral Gene Carrier

    No full text
    Comparative investigations were carried out regarding the efficiency of introduction of exogenous genes into cultured cells using a cationic polysaccharide DEAE-dextran-MMA (methyl methacrylate ester) graft copolymer (2-diethylaminoethyl-dextran-methyl methacrylate graft copolymer; DDMC) as a nonviral carrier for gene introduction. The results confirmed that the gene introduction efficiency was improved with DDMC relative to DEAE-dextran. Comparative investigations were carried out using various concentrations of DDMC and DNA in the introduction of DNA encoding luciferase (pGL3 control vector; Promega) into COS-7 cells derived from African green monkey kidney cells. The complex formation reaction is thought to be directly proportional to the transformation rate, but the complex formation reaction between DDMC and DNA is significantly influenced by hydrophobic bonding strength along with hydrogen bonding strength and Coulomb forces due to the hydrophobicity of the grafted MMA sections. It is thought that the reaction is a Michaelis-Menten type complex formation reaction described by the following equation: Complex amount = K1 (DNA concentration)(DDMC concentration). In support of this equation, it was confirmed that the amount of formed complex was proportional to the RLU value

    OMICS Analyses Unraveling Related Gene and Protein-Driven Molecular Mechanisms Underlying PACAP 38-Induced Neurite Outgrowth in PC12 Cells

    No full text
    The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3β, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5–120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called ‘Initial Early Factors’, e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of ‘serotonergic synapse, neuropeptide and neurogenesis, and axon guidance’. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992

    Effect of PACAP on sweat secretion by immortalized human sweat gland cells

    No full text
    The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders
    corecore