3,281 research outputs found
Muon anomaly and a lower bound on higgs mass due to a light stabilized radion in the Randall-Sundrum model
We investigate the Randall-Sundrum model with a light stabilized radion
(required to fix the size of the extra dimension) in the light of muon
anomalous magnetic moment . Using the recent data
(obtained from the E821 experiment of the BNL collaboration) which differs by
from the Standard Model result, we obtain constraints on radion
mass \mphi and radion vev \vphi. In the presence of a radion the beta
functions \beta(\l) and of higgs quartic coupling (\l) and
top-Yukawa coupling () gets modified. We find these modified beta
functions. Using these beta functions together with the anomaly constrained
\mphi and \vphi, we obtain lower bound on higgs mass . We compare our
result with the present LEP2 bound on .Comment: Version to be appeared in IJMP
Discovery potential of top-partners in a realistic composite Higgs model with early LHC data
Composite Higgs models provide a natural, non-supersymmetric solution to the
hierarchy problem. In these models, one or more sets of heavy top-partners are
typically introduced. Some of these new quarks can be relatively light, with a
mass of a few hundred GeV, and could be observed with the early LHC collision
data expected to be collected during 2010. We analyse in detail the collider
signatures that these new quarks can produce. We show that final states with
two (same-sign) or three leptons are the most promising discovery channels.
They can yield a 5 sigma excess over the Standard Model expectation already
with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive
feature of this model. We present a new method to reconstruct their masses from
their leptonic decay without relying on jets in the final state.Comment: 28 pages 11 Figures 7 Tables, minor changes, added references,
matches published versio
Maximum Significance at the LHC and Higgs Decays to Muons
We present a new way to define and compute the maximum significance
achievable for signal and background processes at the LHC, using all available
phase space information. As an example, we show that a light Higgs boson
produced in weak--boson fusion with a subsequent decay into muons can be
extracted from the backgrounds. The method, aimed at phenomenological studies,
can be incorporated in parton--level event generators and accommodate
parametric descriptions of detector effects for selected observables.Comment: 7 pages, 2 figures, changes to wording and new references, published
versio
Experiment Simulation Configurations Used in DUNE CDR
The LBNF/DUNE CDR describes the proposed physics program and experimental
design at the conceptual design phase. Volume 2, entitled The Physics Program
for DUNE at LBNF, outlines the scientific objectives and describes the physics
studies that the DUNE collaboration will perform to address these objectives.
The long-baseline physics sensitivity calculations presented in the DUNE CDR
rely upon simulation of the neutrino beam line, simulation of neutrino
interactions in the far detector, and a parameterized analysis of detector
performance and systematic uncertainty. The purpose of this posting is to
provide the results of these simulations to the community to facilitate
phenomenological studies of long-baseline oscillation at LBNF/DUNE.
Additionally, this posting includes GDML of the DUNE single-phase far detector
for use in simulations. DUNE welcomes those interested in performing this work
as members of the collaboration, but also recognizes the benefit of making
these configurations readily available to the wider community.Comment: 9 pages, 4 figures, configurations in ancillary file
The effect of flooding on the exchange of the volatile C<sub>2</sub>-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere
International audienceThe effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid was investigated with 2?3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited significant emissions of any of the compounds. A slight deposition of acetaldehyde and acetic acid was mainly observed, instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid occurred only by the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning confirmed that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (3?200 nmol m?2 min?1 for ethanol and 5?500 nmol m?2 min?1 for acetaldehyde). Acetic acid emissions reached 12 nmol m?2 min?1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere
Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz
We apply the maximum entropy principle to construct the natural invariant
density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel
function reconstruction technique that is based on the solution of Hausdorff
moment problem via maximizing Shannon entropy, we estimate the invariant
density and the Lyapunov exponent of nonlinear maps in one-dimension from a
knowledge of finite number of moments. The accuracy and the stability of the
algorithm are illustrated by comparing our results to a number of nonlinear
maps for which the exact analytical results are available. Furthermore, we also
consider a very complex example for which no exact analytical result for
invariant density is available. A comparison of our results to those available
in the literature is also discussed.Comment: 16 pages including 6 figure
General Neutralino NLSPs at the Early LHC
Gauge mediated supersymmetry breaking (GMSB) is a theoretically
well-motivated framework with rich and varied collider phenomenology. In this
paper, we study the Tevatron limits and LHC discovery potential for a wide
class of GMSB scenarios in which the next-to-lightest superpartner (NLSP) is a
promptly-decaying neutralino. These scenarios give rise to signatures involving
hard photons, 's, 's, jets and/or higgses, plus missing energy. In order
to characterize these signatures, we define a small number of minimal spectra,
in the context of General Gauge Mediation, which are parameterized by the mass
of the NLSP and the gluino. Using these minimal spectra, we determine the most
promising discovery channels for general neutralino NLSPs. We find that the
2010 dataset can already cover new ground with strong production for all NLSP
types. With the upcoming 2011-2012 dataset, we find that the LHC will also have
sensitivity to direct electroweak production of neutralino NLSPs.Comment: 26 page
- …
