45 research outputs found

    Correlating Chemical Reaction and Mass Transport in Hydrogen-based Direct Reduction of Iron Oxide

    Full text link
    Steelmaking contributes 8% to the total CO2 emissions globally, primarily due to coal-based iron ore reduction. Clean hydrogen-based ironmaking has variable performance because the dominant gas-solid reduction mechanism is set by the defects and pores inside the mm-nm sized oxide particles that change significantly as the reaction progresses. While these governing dynamics are essential to establish continuous flow of iron and its ores through reactors, the direct link between agglomeration and chemistry is still contested due to missing measurements. In this work, we directly measure the connection between chemistry and agglomeration in the smallest iron oxides relevant to magnetite ores. Using synthesized spherical 10-nm magnetite particles reacting in H2, we resolve the formation and consumption of w\"ustite (FeO) - the step most commonly attributed to agglomeration. Using X-ray scattering and microscopy, we resolve crystallographic anisotropy in the rate of the initial reaction, which becomes isotropic as the material sinters. Complementing with imaging, we demonstrate how the particles self-assemble, subsequently react and sinter into ~100x oblong grains. Our insights into how morphologically uniform iron oxide particles react and agglomerate H2 reduction enable future size-dependent models to effectively describe the multiscale iron ore reduction

    High-quality genome assembly of a C. crossoptilon and related functional and genetics data resources

    No full text
    Abstract There are four species in the Crossoptilon genus inhibiting at from very low to very high altitudes across China, and they are in varying levels of danger of extinction. To better understand the genetic basis of adaptation to high altitudes and genetic changes due to bottleneck, we assembled the genome (~1.02 Gb) of a white eared pheasant (WT) (Crossoptilon crossoptilon) inhibiting at high altitudes (3,000~7,000 m) in northwest of Yunnan province, China, using a combination of Illumina short reads, PacBio long reads and Hi-C reads, with a contig N50 of 19.63 Mb and only six gaps. To further provide resources for gene annotation as well as functional and population genetics analyses, we sequenced transcriptomes of 20 major tissues of the WT individual and re-sequenced another 10 WT individuals and a blue eared pheasant (Crossoptilon auritum) individual inhabiting at intermediate altitudes (1,500~3,000 m). Our assembled WT genome, transcriptome data, and DNA sequencing data can be valuable resources for studying the biology, evolution and developing conservation strategies of these endangered species

    Spontaneous hepatic haemorrhage after caesarean section in a patient with uraemia and superimposed preeclampsia: a case report

    No full text
    Perinatal spontaneous hepatic haemorrhage is a very rare disease affecting pregnant women, particularly those on long-term dialysis, that has a high maternal and infant mortality rate. Most patients experience preeclampsia with haemolysis, elevated liver enzymes and low platelets syndrome. Here, the case of a 35-year-old multigravida patient with known chronic kidney disease and chronic hypertension with uraemia, who developed spontaneous hepatic haemorrhage after caesarean section, is described. The patient experienced sudden massive circulatory failure, but hemodynamics were temporarily stabilized after emergency surgery. Following transfer to the intensive care unit for continued treatment, her blood pressure and haemoglobin level continued to drop. Selective hepatic artery embolization was performed on day 2 after delivery, and her vital signs gradually stabilized. On day 30 after delivery, the patient was discharged in a stable condition. The newborn recovered after therapy in neonatal intensive care for 2 months. The present case suggests that, for perinatal spontaneous hepatic haemorrhage, timely and accurate diagnosis, multidisciplinary management and determining the therapeutic approach according to clinical symptoms are essential

    The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection

    No full text
    Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and “cytokine storm,” leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment

    Attentional Ptycho-Tomography (APT) for three-dimensional nanoscale X-ray imaging with minimal data acquisition and computation time

    No full text
    Abstract Noninvasive X-ray imaging of nanoscale three-dimensional objects, such as integrated circuits (ICs), generally requires two types of scanning: ptychographic, which is translational and returns estimates of the complex electromagnetic field through the IC; combined with a tomographic scan, which collects these complex field projections from multiple angles. Here, we present Attentional Ptycho-Tomography (APT), an approach to drastically reduce the amount of angular scanning, and thus the total acquisition time. APT is machine learning-based, utilizing axial self-Attention for Ptycho-Tomographic reconstruction. APT is trained to obtain accurate reconstructions of the ICs, despite the incompleteness of the measurements. The training process includes regularizing priors in the form of typical patterns found in IC interiors, and the physics of X-ray propagation through the IC. We show that APT with ×12 reduced angles achieves fidelity comparable to the gold standard Simultaneous Algebraic Reconstruction Technique (SART) with the original set of angles. When using the same set of reduced angles, then APT also outperforms Filtered Back Projection (FBP), Simultaneous Iterative Reconstruction Technique (SIRT) and SART. The time needed to compute the reconstruction is also reduced, because the trained neural network is a forward operation, unlike the iterative nature of these alternatives. Our experiments show that, without loss in quality, for a 4.48 × 93.2 × 3.92 µm3 IC (≃6 × 108 voxels), APT reduces the total data acquisition and computation time from 67.96 h to 38 min. We expect our physics-assisted and attention-utilizing machine learning framework to be applicable to other branches of nanoscale imaging, including materials science and biological imaging

    Nonorthogonal orbital based n -body reduced density matrices and their applications to valence bond theory III Second-order perturbation theory using valence bond self-consistent field function as reference

    No full text
    Using the formulas and techniques developed in Papers I and II of this series, the recently developed second-order perturbation theory based on a valence bond self-consistent field reference function (VBPT2) has been extended by using the internally contracted correction wave function. This ansatz strongly reduces the size of the interaction space compared to the uncontracted wave function and thus improves the capability of the VBPT2 method dramatically. Test calculations show that internally contracted VBPT2 using only a small number of reference valence bond functions, can give results as accuracy as the VBPT2 method and other more sophisticated methods such as full configuration interaction and multireference configuration interaction. ? 2014 AIP Publishing LLC

    Analysis on the legal protection of merchandising rights in characters

    No full text
    corecore