205 research outputs found

    Impaired discourse content in aphasia is associated with frontal white matter damage

    Get PDF
    Aphasia is a common consequence of stroke with severe impacts on employability, social interactions and quality of life. Producing discourse-relevant information in a real-world setting is the most important aspect of recovery because it is critical to successful communication. This study sought to identify the lesion correlates of impaired production of relevant information in spoken discourse in a large, unselected sample of participants with post-stroke aphasia. Spoken discourse (n = 80) and structural brain scans (n = 66) from participants with aphasia following left hemisphere stroke were analysed. Each participant provided 10 samples of spoken discourse elicited in three different genres, and ‘correct information unit’ analysis was used to quantify the informativeness of speech samples. The lesion correlates were identified using multivariate lesion–symptom mapping, voxel-wise disconnection and tract-wise analyses. Amount and speed of relevant information were highly correlated across different genres and with total lesion size. The analyses of lesion correlates converged on the same pattern: impaired production of relevant information was associated with damage to anterior dorsal white matter pathways, specifically the arcuate fasciculus, frontal aslant tract and superior longitudinal fasciculus. Damage to these pathways may be a useful biomarker for impaired informative spoken discourse and informs development of neurorehabilitation strategies

    Phase synchronization during the processing of taxonomic and thematic relations

    Get PDF
    Semantic relations include “taxonomic” relations based on shared features and “thematic” relations based on co-occurrence in events. The “dual-hub” account proposes that the anterior temporal lobe (ATL) is functionally specialized for taxonomic relations and the inferior parietal lobule (IPL) for thematic relations. This study examined this claim by analyzing the intra- and inter-region phase synchronization of intracranial EEG data from electrodes in the ATL, IPL, and two subregions of the semantic control network: left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG). Ten participants with epilepsy completed a semantic relatedness judgment task during intracranial EEG recording and had electrodes in at least one hub and at least one semantic control region. Theta band phase synchronization was partially consistent with the dual-hub account: synchronization between the ATL and IFG/pMTG increased when processing taxonomic relations, and synchronization within the IPL and between IPL and pMTG increased when processing thematic relations

    Impaired Discourse Content in Aphasia Is Associated With Frontal White Matter Damage

    Get PDF
    Aphasia is a common consequence of stroke with severe impacts on employability, social interactions and quality of life. Producing discourse-relevant information in a real-world setting is the most important aspect of recovery because it is critical to successful communication. This study sought to identify the lesion correlates of impaired production of relevant information in spoken discourse in a large, unselected sample of participants with post-stroke aphasia. Spoken discourse (n = 80) and structural brain scans (n = 66) from participants with aphasia following left hemisphere stroke were analysed. Each participant provided 10 samples of spoken discourse elicited in three different genres, and ‘correct information unit’ analysis was used to quantify the informativeness of speech samples. The lesion correlates were identified using multivariate lesion–symptom mapping, voxel-wise disconnection and tract-wise analyses. Amount and speed of relevant information were highly correlated across different genres and with total lesion size. The analyses of lesion correlates converged on the same pattern: impaired production of relevant information was associated with damage to anterior dorsal white matter pathways, specifically the arcuate fasciculus, frontal aslant tract and superior longitudinal fasciculus. Damage to these pathways may be a useful biomarker for impaired informative spoken discourse and informs development of neurorehabilitation strategies

    Inversion of Different Cultivated Soil Types’ Salinity Using Hyperspectral Data and Machine Learning

    Get PDF
    Soil salinization is one of the main causes of global desertification and soil degradation. Although previous studies have investigated the hyperspectral inversion of soil salinity using machine learning, only a few have been based on soil types. Moreover, agricultural fields can be improved based on the accurate estimation of the soil salinity, according to the soil type. We collected field data relating to six salinized soils, Haplic Solonchaks (HSK), Stagnic Solonchaks (SSK), Calcic Sonlonchaks (CSK), Fluvic Solonchaks (FSK), Haplic Sonlontzs (HSN), and Takyr Solonetzs (TSN), in the Hetao Plain of the upper reaches of the Yellow River, and measured the in situ hyperspectral, pH, and electrical conductivity (EC) values of a total of 231 soil samples. The two-dimensional spectral index, topographic factors, climate factors, and soil texture were considered. Several models were used for the inversion of the saline soil types: partial least squares regression (PLSR), random forest (RF), extremely randomized trees (ERT), and ridge regression (RR). The spectral curves of the six salinized soil types were similar, but their reflectance sizes were different. The degree of salinization did not change according to the spectral reflectance of the soil types, and the related properties were inconsistent. The Pearson’s correlation coefficient (PCC) between the two-dimensional spectral index and the EC was much greater than that between the reflectance and EC in the original band. In the two-dimensional index, the PCC of the HSK-NDI was the largest (0.97), whereas in the original band, the PCC of the SSK400 nm was the largest (0.70). The two-dimensional spectral index (NDI, RI, and DI) and the characteristic bands were the most selected variables in the six salinized soil types, based on the variable projection importance analysis (VIP). The best inversion model for the HSK and FSK was the RF, whereas the best inversion model for the CSK, SSK, HSN, and TSN was the ERT, and the CSK-ERT had the best performance (R2 = 0.99, RMSE = 0.18, and RPIQ = 6.38). This study provides a reference for distinguishing various salinization types using hyperspectral reflectance and provides a foundation for the accurate monitoring of salinized soil via multispectral remote sensing

    Left Anterior Temporal Lobe and Bilateral Anterior Cingulate Cortex Are Semantic Hub Regions: Evidence from Behavior-Nodal Degree Mapping in Brain-Damaged Patients

    Get PDF
    The organizational principles of semantic memory in the human brain are still controversial. Although studies have shown that the semantic system contains hub regions that bind information from different sensorimotoric modalities to form concepts, it is unknown whether there are hub regions other than the anterior temporal lobe (ATL). Meanwhile, previous studies have rarely used network measurements to explore the hubs or correlated network indexes with semantic performance, although the most direct supportive evidence of hubs should come from the network perspective. To fill this gap, we correlated the brain-network index with semantic performance in 86 brain-damaged patients. We especially selected the nodal degree measure that reflects how well a node is connected in the network. The measure was calculated as the total number of connections of a given node with other nodes in the resting-state functional MRI network. Semantic ability was measured using the performance of both general and modality-specific (object form, color, motion, sound, manipulation, and function) semantic tasks. We found that the left ATL and the bilateral anterior cingulate cortex could be semantic hubs because the reduced nodal degree values of these regions could effectively predict the deficits in both general and modality-specific semantic performance. Moreover, the effects remained when the analyses were performed only in the patients who did not have lesions in these regions. The two hub regions might support semantic representations and executive control processes, respectively. These data provide empirical evidence for the distributed-plus-hub theory of semantic memory from the network perspective.</p

    Associations of miR-499 and miR-34b/c Polymorphisms with Susceptibility to Hepatocellular Carcinoma: An Evidence-Based Evaluation

    Get PDF
    Background. Hepatocellular carcinoma (HCC) represents the sixth common cancer in the world. Single nucleotide polymorphisms (SNPs) in microRNA genes may be associated with susceptibility to HCC. Recently, several studies have reported possible associations of SNPs miR-499 T>C rs3746444 and miR-34b/c T>C rs4938723 with the risk of HCC. However the results are inconsistent and inconclusive. In this present study, we conducted a meta-analysis to comprehensively evaluate potential associations between the two SNPs and HCC susceptibility. Methods. Through a systematic literature search, 8-case-control studies involving 5464 subjects were identified and included in this meta-analysis. The association between the two common SNPs and HCC risk was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). Our results showed no significant association between rs3746444 and susceptibility to HCC, whereas variant genotypes of rs4938723 were associated with increased HCC risk in allele frequency model and heterozygous model (C versus T, OR=1.11, 95% CI: 1.01–1.23, P=0.04; TC versus TT, OR=1.19, 95% CI: 1.03–1.37, P=0.02). Conclusions. The current evidence did not support association between rs3746444 and HCC risk. SNP rs4938723 may be associated with susceptibility to HCC. Further well-designed studies are required to clarify the relationships between the two SNPs and HCC risk

    Topographical distribution of blubber in finless porpoises (Neophocaena asiaeorientalis sunameri): a result from adapting to living in coastal waters

    Get PDF
    Background: Blubber has many functions, among which energy storage, thermoregulation, buoyancy, and hydrodynamic streamlining are the most frequently cited. Within and between taxa, variations in its structure and distribution likely reflect different adaptations of a species to its life history requirements, environment, health, and function. Here, we use ultrasound to describe the distribution of blubber in the finless porpoise (Neophocaena asiaeorientalis sunameri) based on examinations of 34 fresh cadavers recovered as accidental fisheries bycatch

    Resolving power of diffraction imaging with an objective: a numerical study

    Get PDF
    Diffraction imaging in the far-field can detect 3D morphological features of an object for its coherent nature. We describe methods for accurate calculation and analysis of diffraction images of scatterers of single and double spheres by an imaging unit based on microscope objective at non-conjugate positions. A quantitative study of the calculated diffraction imaging in spectral domain has been performed to assess the resolving power of diffraction imaging. It has been shown numerically that with coherent illumination of 532 nm in wavelength the imaging unit can resolve single spheres of 2 ĂŽÂŒm or larger in diameters and double spheres separated by less than 300 nm between their centers.ECU Open Access Publishing Fun
    • 

    corecore