50 research outputs found

    Continuous stellar mass-loss in N-body models of galaxies

    Get PDF
    We present an N-body computer code - aimed at studies of galactic dynamics - with a CPU-efficient algorithm for a continuous (i.e. time-dependent) stellar mass-loss. First, we summarize available data on stellar mass-loss and derive the long-term (20 Gyr) dependence of mass-loss rate of a coeval stellar population. We then implement it, through a simple parametric form, into a particle-mesh code with stellar and gaseous particles. We perform several tests of the algorithm reliability and show an illustrative application: a 2D simulation of a disk galaxy, starting as purely stellar but evolving as two-component due to gradual mass-loss from initial stars and due to star formation. In a subsequent paper we will use the code to study what changes are induced in galactic disks by the continuous gas recycling compared to the instantaneous recycling approximation, especially the changes in star formation rate and radial inflow of matter.Comment: accepted for publication in Astronomy & Astrophysics (13 pages, 11 postscript figures

    Properties of the Narrow-Line Region in Seyfert Galaxies

    Get PDF
    We study the narrow-line region (NLR) of six Seyfert-1 and six Seyfert-2 galaxies by means of spatially resolved optical spectroscopy and photoionization modelling. From spatially resolved spectral diagnostics, we find a transition between the AGN-excited NLR and the surrounding star-forming regions, allowing us to determine the NLR size independent of stellar contamination. CLOUDY photoionization models show that the observed transition represents a true difference in ionization source and cannot be explained by variations of physical parameters. The electron density and ionization parameter decrease with radius indicating that the NLR is photoionized by the central source only. The velocity field suggests a disky NLR gas distribution

    Kinematic Evidence of Minor Mergers in Normal Sa Galaxies: NGC3626, NGC3900, NGC4772 and NGC5854

    Get PDF
    BVRI and H-alpha imaging and long-slit optical spectroscopic data are presented for four morphologically normal and relatively isolated Sa galaxies, NGC3626, NGC3900, NGC4772 and NGC5854. VLA HI synthesis imaging is presented for the first 3 objects. In all 4 galaxies, evidence of kinematic decoupling of ionized gas components is found; the degree and circumstances of the distinct kinematics vary from complete counterrotation of all of the gas from all of the stars (NGC3626) to nuclear gas disks decoupled from the stars (NGC5854) to anomalous velocity central gas components (NGC3900 and NGC4772). In the 3 objects mapped in HI, the neutral gas extends far beyond the optical radius, R_HI/R_25 > 2. In general, the HI surface density is very low and the outer HI is patchy and asymmetric or found in a distinct ring, exterior to the optical edge. While the overall HI velocity fields are dominated by circular motions, strong warps are suggested in the outer regions. Optical imaging is also presented for NGC 4138 previously reported by Jore et al. (1996) to show counterrotating stellar components. The multiwavelength evidence is interpreted in terms of the kinematic "memory" of past minor mergers in objects that otherwise exhibit no morphological signs of interaction.Comment: 26 pages, 15 figures, accepted for publication in Astron. J., postscript figures available at ftp://culebra.tn.cornell.edu/pub/haynes/figures.tar.g

    Energy Dissipation in Interstellar Cloud Collisions

    Get PDF
    We present a study of the kinetic energy dissipation in interstellar cloud collisions. The main aim is to understand the dependence of the elasticity (defined as the ratio of the final to the initial kinetic energy of the clouds) on the velocity and mass ratio of the colliding clouds, magnetic field strength, and gas metallicity for head-on collisions. The problem has been studied both analytically and via numerical simulations. We have derived handy analytical relationships that well approximate the analogous numerical results. The main findings of this work are: (i) the kinetic energy dissipation in cloud collisions is minimum (i.e. the collision elasticity is maximum) for a cloud relative velocity vr30kms1v_r \simeq 30 km s^{-1}; (ii) the above minimum value is proportional ZLc2Z L_c^2, where ZZ is the metallicity and LcL_c is the cloud size: the larger is ZLc2Z L_c^2 the more dissipative (i.e. inelastic) the collision will be; (iii) in general, we find that the energy dissipation decreases when the magnetic field strength, and mass ratio of the clouds are increased and the metallicity is decreased, respectively. We briefly discuss the relevance of this study to the global structure of the interstellar medium and to galaxy formation and evolution.Comment: 16 pages, aasms LaTeX, 7 figures. ApJ, accepte

    Nature of nuclear rings in unbarred galaxies: NGC 7742 and NGC 7217

    Full text link
    We have studied the unbarred Sb galaxy with a nuclear star-forming ring, NGC 7742, by means of 2D spectroscopy, long-slit spectroscopy, and imaging, and have compared the results with the properties of another galaxy of this type, NGC 7217, which is studied by us earlier. Both galaxies have many peculiar features in common: each has two global exponential stellar disks with different scalelengths, each possesses a circumnuclear inclined gaseous disk with a radius of 300 pc, and each has a global counterrotating subsystem, gaseous one in NGC 7742 and stellar one in NGC 7217. We suggest that past minor merger is the probable cause of all these peculiarities, including appearance of the nuclear star-forming rings without global bars; the rings might be produced as resonance features by tidally induced oval distortions of the global stellar disks.Comment: Accepted to AJ, 11 PS/EPS figures (5 figures were added in color

    Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium

    Get PDF
    We extend previous studies of the physics of interstellar cloud collisions by beginning investigation of the role of magnetic fields through 2D magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions between equal mass, mildly supersonic diffuse clouds. We include a moderate magnetic field and two limiting field geometries, with the field lines parallel (aligned) and perpendicular (transverse) to the colliding cloud motion. We explore both adiabatic and radiative cases, as well as symmetric and asymmetric ones. We also compute collisions between clouds evolved through prior motion in the intercloud medium and compare with unevolved cases. We find that: In the (i) aligned case, adiabatic collisions, like their HD counterparts, are very disruptive, independent of the cloud symmetry. However, when radiative processes are taken into account, partial coalescence takes place even in the asymmetric case, unlike the HD calculations. In the (ii) transverse case, collisions between initially adjacent unevolved clouds are almost unaffected by magnetic fields. However, the interaction with the magnetized intercloud gas during the pre-collision evolution produces a region of very high magnetic energy in front of the cloud. In collisions between evolved clouds with transverse field geometry, this region acts like a ``bumper'', preventing direct contact between the clouds, and eventually reverses their motion. The ``elasticity'', defined as the ratio of the final to the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format). Full resolution images as well as mpeg animations are available at http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in The Astrophysical Journa

    New multi-zoom method for N-body simulations: application to galaxy growth by accretion

    Full text link
    In this work we focus on the properties of accretion onto galaxies. Through numerical simulations we investigate the geometrical properties of accretion. To span the scale range required in these simulations we have developed a new numerical technique: the multi-zoom method. We run a series of Tree-SPH simulations in smaller and smaller boxes at higher and higher mass resolution, using data recorded at the previous level to account for the matter inflow and the tidal field from outside matter. The code is parallelized using OpenMP. We present a validation test to evaluate the robustness of the method: the pancake collapse. We apply this new multizoom method to study the accretion properties. Zooming in onto galaxies from a cosmological simulation, we select a sample of 10 well resolved galaxies (5000 baryonic particles or more). We sum up their basic properties and plot a Tully-Fisher relation. We find that smooth accretion of intergalactic cold gas dominates mergers for the mass growth of galaxies at z < 2. Next we study the baryonic accretion rate which shows different behaviours depending on the galaxy mass. The bias is also computed at different radii and epochs. Then we present galactocentric angular maps for the accretion integrated between z=2 and z=0, which reveal that accretion is highly anisotropic. Average accretion rates plotted against galactocentric latitude show a variety of behaviours. In general, accretion in the galactic plane is favored, even more for baryonic matter than for dark matter.Comment: Page lay out fix u

    Insights on the stellar mass-metallicity relation from the CALIFA survey

    Get PDF
    We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z*) relates to the total stellar mass (M*) and the local mass surface density (μ\mu*) in both spheroidal and disk dominated galaxies. The galaxies are shown to follow a clear stellar mass-metallicity relation (MZR) over the whole 109^9 to 1012^{12} M_{\odot} range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. We also find a strong relation between the local values of μ\mu* and Z* (the μ\muZR), betraying the influence of local factors in determining Z*. This shows that both local (μ\mu*-driven) and global (M*-driven) processes are important in determining the metallicity in galaxies. We find that the overall balance between local and global effects varies with the location within a galaxy. In disks, μ\mu* regulates Z*, producing a strong μ\muZR whose amplitude is modulated by M*. In spheroids it is M* who dominates the physics of star formation and chemical enrichment, with μ\mu* playing a minor, secondary role. These findings agree with our previous analysis of the star formation histories of CALIFA galaxies, which showed that mean stellar ages are mainly governed by surface density in galaxy disks and by total mass in spheroids.Comment: 6 pages, 3 figures, accepted for publication in ApJ

    Stellar Population gradients in galaxy discs from the CALIFA survey

    Get PDF
    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done in the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. Contrary to this, the values of both age and metallicity at \sim2.5 scale-lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients in galaxies with without bars. We discuss possible scenarios that can lead to this absence of difference.Comment: 24 pages, 17 figures, accepted for publication in A&
    corecore