1,048 research outputs found

    On mean convergence of Hermite–Fejér and Hermite interpolation for Erdős weights

    Get PDF
    AbstractWe investigate convergence of Hermite–Fejér and Hermite interpolation polynomials in Lp(0<p<∞) for Erdo&#x030B;s weights

    Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    Get PDF
    AbstractGiven a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (−1,1)

    Dimensional Crossover driven by Magnetic Ordering in Optical Conductivity of Pr_{1/2}Sr_{1/2}MnO_3

    Full text link
    We investigated optical properties of Pr_{0.5}Sr_{0.5}MnO_3, which has the A-type antiferromagnetic ordering at a low temperature. We found that T- dependence of spectral weight transfer shows a clear correlation with the magnetic phase transition. In comparison with the optical conductivity results of Nd_{0.5}Sr_{0.5}MnO_3, which has the CE-type antiferromagnetic charge ordering, we showed that optical properties of Pr_{0.5}Sr_{0.5}MnO_3 near the Neel temperature could be explained by a crossover from 3D to 2D metals. Details of spectral weight changes are consistent with the polaron picture.Comment: 11 pages, 4 figures, submitted to PRL at June

    Melting of Charge/Orbital Ordered States in Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3: Temperature and Magnetic Field Dependent Optical Studies

    Full text link
    We investigated the temperature (T=T= 15 ∼\sim 290 K) and the magnetic field (H=H= 0 ∼\sim 17 T) dependent optical conductivity spectra of a charge/orbital ordered manganite, Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3. With variation of TT and HH, large spectral weight changes were observed up to 4.0 eV. These spectral weight changes could be explained using the polaron picture. Interestingly, our results suggested that some local ordered state might remain above the charge ordering temperature, and that the charge/orbital melted state at a high magnetic field (i.e. at H=H= 17 T and % T= 4.2 K) should be a three dimensional ferromagnetic metal. We also investigated the first order phase transition from the charge/orbital ordered state to ferromagnetic metallic state using the TT- and HH% -dependent dielectric constants ϵ1\epsilon_1. In the charge/orbital ordered insulating state, ϵ1\epsilon_1 was positive and dϵ1/dω≈0d\epsilon_1/d\omega \approx 0. With increasing TT and HH, ϵ1\epsilon_1 was increased up to the insulator-metal phase boundaries. And then, ϵ1\epsilon_1 abruptly changed into negative and dϵ1/dω>0d\epsilon_1/d\omega >0, which was consistent with typical responses of a metal. Through the analysis of ϵ1% \epsilon_1 using an effective medium approximation, we found that the melting of charge/orbital ordered states should occur through the percolation of ferromagnetic metal domains.Comment: submitted to Phys. Rev.

    Micro Membrane Filters for Passive Plasma Extraction From Whole Human Blood Using Silicon Nitride-based Microfilters and Plama Collection Using Agarose Gels

    Get PDF
    AbstractThe novelty of this study resides in the fabrication of a passive, operating on capillary force, penetration-flow microfluidic device for plasma separation, based on both silicon nitride combination (SiN-SiO-SiN)-based microfilters and agarose gels, and its characterization for plasma separation from whole human blood. The fabrication processes are compatible with IC process protocols, with merits of mass productions and precise size control. The fabrication process for silicon nitride membrane was reported at Lab Chip [1], and quantification its applications to affinity-based protein separation on the silicon nitride was reported at MicroTAS’07 [2]. Our method differs from that of group Yobas [3] in the specific separation method and materials, and of group Pizziconi [4] in the geometry of the filter, and fluidic components with the structure

    Optical Investigations of Charge Gap in Orbital Ordered La1/2Sr3/2MnO4

    Full text link
    Temperature and polarization dependent electronic structure of La1/2Sr3/2MnO4 were investigated by optical conductivity analyses. With decreasing temperature, for E//ab, a broad mid-infrared (MIR) peak of La1/2Sr3/2MnO4 becomes narrower and moves to the higher frequency, while that of Nd1/2Sr3/2MnO4 nearly temperature independent. We showed that the MIR peak in La1/2Sr3/2MnO4 originates from orbital ordering associated with CE-type magnetic ordering and that the Jahn-Teller distortion has a significant influence on the width and the position of the MIR peak.Comment: 10 pages, 4 figure

    Optical Evidence of Multiphase Coexistence in Single Crystalline (La,Pr,Ca)MnO3

    Full text link
    We investigated temperature (T)- and magnetic field-dependent optical conductivity spectra (\s\w) of a La_5/8-yPr_yCa_3/8MnO_3 (y~0.35) single crystal, showing intriguing phase coexistence at low T. At T_C < T < T_CO, a dominant charge-ordered phase produces a large optical gap energy of ~0.4 eV. At T < T_C, at least two absorption bands newly emerge below 0.4 eV. Analyses of (\s\w) indicate that the new bands should be attributed to a ferromagnetic metallic and a charge-disordered phase that coexist with the charge-ordered phase. This optical study clearly shows that La_5/8-yPrCa_3/8MnO_3 (y~0.35) is composed of multiphases that might have different lattice strains.Comment: A single file with 9 figures embedded, to appear in Phys. Rev.

    Room temperature ferromagnetism in chemically synthesized ZnO rods

    Full text link
    We report structural and magnetic properties of pure ZnO rods using X-ray diffraction (XRD), magnetization hysteresis (M-H) loop and near edge x-ray fine structure spectroscopy (NEXAFS) study at O K edge. Sample of ZnO was prepared by co-precipitation method. XRD and selective area electron diffraction measurements infer that ZnO rods exhibit a single phase polycrystalline nature with wurtzite lattice. Field emission transmission electron microscopy, field emission scanning electron microscopy micrographs infers that ZnO have rod type microstructures with dimension 200 nm in diameter and 550 nm in length. M-H loop studies performed at room temperature display room temperature ferromagnetism in ZnO rods. NEXAFS study reflects absence of the oxygen vacancies in pure ZnO rods.Comment: 8 Pages, 3 Figure
    • …
    corecore