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Abstract

Given a continuous real-valued function f which vanishes outside a 6xed 6nite interval, we establish necessary con-
ditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of
exponential decay on the real line or at the endpoints of (−1; 1). c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and statement of results

Let I denote either the open interval (−1; 1) or R and let w : I → (0;∞) be an even continuous
weight function with all power moments∫

I
xnw2(x) dx; n¿0

6nite. Then we may de6ne orthonormal polynomials

pn(x) :=pn(w2; x) = �nxn + · · · ; �n = �n(w2)¿ 0; x∈R
satisfying∫

I
pn(w2; x)pm(w2; x)w2(x) dx =

{
0; n �= m;

1; n= m
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and with zeros denoted by

−∞¡xn;n ¡ xn−1; n ¡ · · ·¡x2; n ¡ x1; n ¡∞:

For each n¿1 and for the given weight w, we de6ne interpolatory matrices

Un := {xj;n: 16j6n} (1.1)

and

Vn+2 = Un ∪ {y0} ∪ {−y0}; (1.2)

where y0 maximizes ‖Pw‖L∞(R) over every P ∈�n. Let f : I → R be a given continuous function
and denote by Ln[f;Un] and Ln[f; Vn+2] the Lagrange interpolation polynomials of degree n− 1 and
n+ 1 interpolating f at the points in Un and Vn+2, respectively.
In this article, we establish a necessary condition for weighted mean convergence of Lagrange

interpolation in Lp (0¡p¡∞), for continuous functions f which vanish outside 6nite 6xed in-
tervals J ⊂ I and for even weights on R that are both of polynomial and of faster than polynomial
decay at in6nity as well as even weights on (−1; 1) that are of exponential decay near ±1. Our class
of functions is the smallest for which convergence questions in weighted Lp spaces are meaningful
and so our main result is the least we can expect to achieve convergence simultaneously for all
three classes of weights considered, for both interpolation schemes (1.1) and (1.2) and for every
0¡p¡∞.
To formulate our main result, we need a suitable class of admissible weights and to this end, let

us agree that I+ will denote either (0;∞) if I is R and (0; 1) if I is (−1; 1). Our class of weights
w will then be assumed to be admissible in the sense of the following de6nition:

1.1. Class of admissible weights

De�nition 1.1. Let wQ = exp(−Q) where Q : I → R is even and continuous:
(a) Assume that Q′′ is continuous in I+ and Q′′, Q′¿0 in I+.
(b) The function

T (x) := 1 +
xQ′′(x)
Q′(x)

; x∈ I+

satis6es for large enough x or x close enough to ±1

T (x) ∼ xQ′(x)
Q(x)

:

Moreover, T satis6es either:
(b1) There exist A¿ 1 and B¿ 1 such that

A6T (x)6B; x∈ I + :

(b2) T is increasing in I+ with limx→0+ T (x)¿ 1. If I = R,

lim
|x|→∞

T (x) =∞
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and if I = (−1; 1), for x close enough to ±1,

T (x)¿
A

1− x2

for some A¿ 2.

Then w shall be called an admissible weight and we shall write w∈A.
Canonical examples of the class A are

(a)

w�(x) := exp(−|x|�); �¿ 1; x∈R: (1.3)

(b)

wk;�(x) := exp(−expk(|x|�)); �¿ 0; k¿1; x∈R: (1.4)

(c)

wk;�(x) := exp(−expk(1− x2)−�); �¿ 0; k¿0; x∈ (−1; 1); (1.5)

where expk denotes the kth iterated exponential.

The weights listed above are, respectively, examples of Freud, Erdős and generalized Pollaczek
weights. Freud weights are characterized by their smooth polynomial decay at in6nity and Erdős
weights by their faster than smooth polynomial decay at in6nity. Generalized Pollaczek weights
decay strongly near ±1 as exponentials and are of faster decay than classical Jacobi weights. They
violate the well-known Szegő condition for orthogonal polynomials, [9, Chapter 5, p. 208].
Following is our main result:

Theorem 1.2. Let wQ ∈A; w¿0∈L1(R) and 0¡p¡∞ be given:
(a) If for every continuous function f vanishing outside a 7xed 7nite interval J ⊂ I

lim
n→∞

∫
I
[|f(x)− Ln(f;Un)(x)|pw(x)] dx = 0 (1.6)

holds; then we have∫
I
[w−1

Q (x)=(1 + |x|)]pw(x) dx¡∞: (1.7)

(b) Moreover if for every continuous function f vanishing outside a 7xed 7nite interval

lim
n→∞

∫
I
[|f(x)− Ln+2(f; Vn+2)(x)|pw(x)] dx = 0 (1.8)

holds; then we have (1:7).

Our theorem shows that if for a certain w¿0∈L1(R), (1.7) fails, then there exists a continuous
function f which vanishes outside a 6nite 6xed interval for which there is no convergence in (1.6)
and (1.8). As our class of functions is the smallest class for which convergence questions in weighted
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Lp are meaningful, (1.7) is the least we should expect to conclude that we have convergence in
general for every p. Our main emphasis in this paper is to derive a necessary condition for mean
convergence of Lagrange interpolation which works for as small a class of functions as possible
and simultaneously for Freud, Erdős and exponential-type weights on R and (−1; 1). At the same
time, our main result applies to both interpolation arrays Un and Vn+2 and so makes more precise
and general earlier necessary conditions obtained by Matjila, Lubinsky and the authors. There is a
vast literature dealing with necessary and suKcient conditions for mean convergence of Lagrange
interpolation for even Freud, Erdős, and generalized Pollaczek weights for larger classes of functions
and for these results, we refer the reader to [1–9,12,14–22,25–27] and the many references cited
therein. For those who are not familiar, the array Vn+2 has recently been shown to yield typically
better suKcient results for mean and uniform convergence of weighted Lagrange interpolation and
for these results we refer the reader to [26,2,3,16,15,6,4] and the references cited therein.
We now show that under certain conditions, we may modify the bound in (1:7). This result is

contained in:

Corollary 1.3. Let wQ ∈A under assumption (b2). Let w¿0∈L1(I) and assume it satis7es the
following condition:

Let 0¡A¡B¡∞ and suppose that uniformly for n¿1 and 16j6n;

A6w(x)=w(xjn)6B x∈ [xj+1; n; xjn]: (1.9)

Then for every continuous function f vanishing outside a 7xed 7nite interval J ⊂ I for which (1:6)
holds; we have∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4[w−1
Q (x)=(1 + |x|)]pw(x) dx¡∞; (1.10)

where

�n := (nT (an))−2=3

and an is the well-known Mhaskar–Rakhmanov–Sa: number for w2
Q; see [24, Chapter 2].

The remainder of this paper is organized as follows. In Section 2, we provide numerous examples
from the literature as to how our main results may be understood while in Section 3, we present
our proofs.

2. Examples

In this section, we will illustrate our main results with numerous examples from the literature where
for typically larger classes of functions necessary and suKcient conditions for mean convergence are
obtained. Because the class of functions that we consider is much smaller than those considered
below, a completely new proof of Theorem 1.2 is needed for the various weights considered.
Throughout, for any two sequences bn and cn of nonzero real numbers, we shall write bn . (&)cn

if there exists a positive constant C, independent of n, such that

bn6(¿)C1cn; n → ∞



S.B. Damelin et al. / Journal of Computational and Applied Mathematics 132 (2001) 357–369 361

and bn ∼ cn if

bn . cn and bn & cn:

Similar notation will be used for functions and sequences of functions.

2.1. Freud weights

Theorem 1.2(a) was 6rst proved by Nevai in [21, Theorem 2] for the Hermite weight wQ =
exp(−x2=2) and its present form for a related class of Freud weights is due to Sakai in [25, (1.2)
and (1.3)]. Let us de6ne w(x) :=wp

Q(x)(1 + |x|)−"p for "+ 1¿ 1=p. Then it is easy to see that we
have (1.7). Indeed for a larger class of functions and for w as above, Lubinsky and Matjila and
Matjila in [17, Theorem 1:3; 19, Theorem 1:1] have shown the following:

Let wQ ∈A; 0¡p¡∞; "∈R; �¿ 0 and �̂ :=min{1; �}. Then for

lim
n→∞ ‖(f(x)− Ln(f;Un)(x))wQ(x)(1 + |x|)−"‖Lp(R) = 0

to hold for every continuous function f : R→ R satisfying

lim
|x|→∞

|f(x)|wQ(x)(1 + |x|)� = 0;
if p64; it is necessary that

�̂+ "¿
1
p
;

if p¿ 4 and � �= 1; it is necessary that

a1=p−(�̂+")
n n(1−4=p)=6 = O(1); n → ∞

and if p¿ 4 and �= 1; it is necessary that

a1=p−(�̂+")
n n(1−4=p)=6 = O(1=log n); n → ∞:

Moreover, in [16, Theorem 1.4], it was shown that for the same class of functions as above, �̂ +
"¿ 1=p is necessary for mean convergence for every 1¡p¡∞ if Un is replaced by Vn+2. Clearly,
if �̂+ "¿ 1=p, then 1 + "¿ 1=p.

2.2. Erdős weights

For larger classes of functions, the following results of Damelin and Lubinsky and Damelin, Jung
and Kwon, are given in [7, Theorem 1:3; 8, Theorems 1:3–1:4; 5, Theorem 1:1; 6, Theorems 1:2–1:3;
4, Corollaries 2.3–2.4]. To illustrate these results let us choose 0¡p¡∞, "; �∈R; #; �¿0; �̂ := {1; �}
and wQ ∈A satisfying (b2) and for every $¿ 0,

T (x). O(Q$(x)): (2.1)

(a) Functions that decay as logarithms:

Let f : R→ R be continuous and suppose that

lim
|x|→∞

|f(x)|wQ(x)(log |x|)1+# = 0: (2.2)
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For

lim
n→∞ ‖(f − Ln(f;Un))(x)wQ(x)(1 + Q(x))−"‖Lp(R) = 0

to hold, it is necessary that

"¿max
{
0;
2
3

(
1
4
− 1

p

)}
:

Moreover if we assume for every $¿ 0; the stronger condition

T (x).
(
logQ′(x)

)1+$

holds instead of (2:1); then for

lim
n→∞ ‖(f − Ln+2(f; Vn+2))wQ(x)(1 + |x|)−�(log(2 + Q(x)))−1‖Lp(R) = 0

to hold it is necessary that �¿1=p and for

lim
n→∞ ‖(f − Ln+2(f; Vn+2))wQ(x)(1 + |x|)−1=p(log(2 + Q(x)))−�‖Lp(R) = 0

to hold it is necessary that �¿1.
(b) Functions that decay as polynomials:

Let f : R→ R be continuous and suppose that

lim
|x|→∞

|f(x)|wQ(x)(1 + |x|)� = 0: (2.3)

For

lim
n→∞ ‖(f − Ln+2(f; Vn+2))w(1 + |x|)−"‖Lp(R) = 0

to hold it is necessary that

�̂+ "¿ 1=p: (2.4)

Moreover if 0¡p¡ 4, then for

lim
n→∞ ‖(f − Ln(f;Un))w(1 + |x|)−"‖Lp(R) = 0

to hold it is necessary that (2:4) holds.

Let us de6ne w(x) := (wQ(x)(1+Q(x))−")p for "¿max{0; 23 ( 14−1=p)}. Then w satis6es condition
(1.9). Moreover, using Lemma 2:3(a), (2:24), (2:16) and Lemma 2:4 of [7] together with (2.1), we
see that there exists $¿ 0 such that for any 0¡%¡ 1,∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4[w−1
Q (x)=(1 + |x|)]pw(x) dx

.
∫
06|x|6a%n

+
∫
a%n6|x|¡x1n

(|1− |x|=an|+ �n)−p=4[(1 + Q(x))−"=(1 + |x|)]p dx

.
∫
06|x|6a%n

[T 1=4(x)(1 + Q(x))−"=(1 + |x|)]p dx



S.B. Damelin et al. / Journal of Computational and Applied Mathematics 132 (2001) 357–369 363

+Q−"p(an)=ap
n

∫
a%n6|x|¡x1n

(|1− |x|=an|+ �n)−p=4 dx

.
∫
06|x|6a%n

[1=(1 + |x|)2] dx + a−p
n Q−"p(an)an�min{0;1−p=4}

n log n

. 1 + n−("−max{0;2=3(1=4−1=p)})p+$ . 1:

Thus we have (1.10) and so (1.7) follows. In the case where we use the extended Lagrange inter-
polation polynomial Ln+2[Vn+2], we may de6ne

w(x) := (wQ(x)(1 + |x|)−�(log(2 + Q(x))−1)p; �¿1=p;

or

w1(x) := (wQ(x)(1 + |x|)−1=p(log(2 + Q(x))−�)p; �¿1;

respectively. Then using Lemma 2:3(a) in [7], we may deduce that∫
I
[w−1

Q (x)=(1 + |x|)]pw(x) dx

=
∫
I
[(log(2 + Q(x)))−1=(1 + |x|)1+�]p

.
∫
I
[(log(2 + Q(x)))−1=(1 + |x|)1+1=p]p

.
∫
I
[(log(2 + |x|))−p=(1 + |x|)p+1]. 1

and proceed similarly for w1. Thus we have (1.7) for both cases.

2.3. Exponential weights on (−1; 1)

Let wQ ∈A, 4¡p¡∞ and "∈R. In [14, Theorem 1:5], Lubinsky established the following
result:

For

lim
n→∞ ‖(f − Ln(f;Un))wQ(1 + Q2=3T )−"‖Lp(−1;1) = 0

to hold for every continuous function

f : (−1; 1)→ R

vanishing outside [− 1
2 ;

1
2 ] it is necessary that

"¿ 1
4 − 1=p:
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Motivated by this result, let us set w(x) :=wp
Q(x)(1 +Q(x)2=3T (x))−"p for "¿1=4− 1=p. Then w

satis6es condition (1.9). Moreover, given 0¡%¡ 1,∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4[w−1
Q (x)=(1 + |x|)]pw(x) dx

=
∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4(1 + Q(x)2=3T (x))−"p dx

.
∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4(1 + Q(x)2=3T (x))−(p=4−1) dx

.
∫
|x|6a%n

+
∫
a%n6|x|6x1n

(|1− |x|=an|+ �n)−p=4(Q(x)2=3T (x))−(p=4−1) dx:

Now choose l such that

2l−16%n62l:

Then using [14, Lemma 2:2], we deduce that there exists a constant $¿ 0 such that∫
|x|6a%n

(|1− |x|=an|+ �n)−p=4(Q(x)2=3T (x))−(p=4−1) dx

.
l∑

k=0

∫ a2k+1

a2k
(|1− |x|=an|+ �n)−p=4(Q(x)2=3T (x))−(p=4−1) dx

.
l∑

k=0

Q−2=3(p=4−1)(a2k ).
l∑

k=0

2−$k(p=4−1) . 1

and ∫
a%n6|x|6x1n

(|1− |x|=an|+ �n)−p=4(Q(x)2=3T (x))−(p=4−1) dx

. (Q(an)2=3T (an))−(p=4−1)
∫
a%n6|x|6x1n

(|1− |x|=an|+ �n)−p=4

. an(Q(an)2=3T (an))−(p=4−1)(�n)−p=4+1

∼ (nT (an))−2=3(p=4−1)(�n)−p=4+1

∼ (�n)(p=4−1)(�n)−p=4+1

∼ 1:

It follows that∫ x1n

x nn

(|1− |x|=an|+ �n)−p=4[w−1
Q (x)=(1 + |x|)]pw(x) dx
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.
∫
|x|6a%n

+
∫
a%n6|x|6x1n

(|1− |x|=an|+ �n)−p=4(Q(x)2=3T (x))−(p=4−1) dx

. 1;

which gives (1.10) and hence (1.7).
Concerning the array Vn+2, Lubinsky has shown in [15, Theorem 1:9] that for 1¡p¡∞ and

every Riemann integrable f with fw bounded

lim
n→∞ ‖(f − Ln(f; Vn+2))wQ(1− t2)d‖Lp(−1;1) = 0

whenever d¿ − 1=p. An easy calculation then shows that w(x) :=wp
Q(1 − x2)dp gives (1.7) when

d¿− 1=p and so for a smaller class of functions, Theorem 1.2 gives a necessary condition for the
above theorem of Lubinsky to hold.

3. The proofs of Theorem 1.2 and Corollary 1.3

In this section, we give our proofs.

Proof of Theorem 1.2. We shall prove Theorem 1:1(b) for Theorem 1.2(a) is similar. We shall
assume 6rst that (b2) holds and that I = R. Using ideas from [21,25], we let C0(−2;−1) be the
space of continuous functions on R with support in [− 2;−1]. Since for this space, (1.8) holds for
the linear functional Ln+2(; ; Vn+2), we may apply the generalized uniform boundedness theorem, see
[23], and conclude that for all f∈C0(−2;−1), we have∫ ∞

−∞
|Ln+2(f; Vn+2)(x)|pw(x) dx . max−26x6−1|f(x)|p: (3.1)

Let {pn}n=1 be the orthonormal polynomials with respect to the admissible weight w2
Q and for each

n= 1; 2; 3; : : : ; let us consider a sequence of functions {gn}∈C0(−2;−1) satisfying
max

−26x6−1
|gn(x)|= 1

and

gn(xkn) = sign(p̃
′
n(xkn)); xkn ∈ (−2;−1);

where p̃n(x) = pn(x)(x − y0)(x + y0). Thus we learn that for each n and for every x∈R
Ln+2(gn;Vn+2)(x) = p̃n(x)

∑
−26xkn6−1

|p̃′
n(xkn)|−1(x − xkn)−1:

Moreover, using [11, Corollary 1:4(b), p. 205] and the identity |xkn ± y0| ∼ an, uniformly for n, we
obtain for −2¡xkn ¡− 1 and uniformly for n

|p̃′
n(xkn)|−1 = |p′

n(xkn)(xkn − y0)(xkn + y0)|−1

∼ n−1a−1=2n :
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Then for x¿ 0 and using [11, Corollary 1.3, p. 205], we deduce that

|Ln+2(gn;Vn+2)(x)|&
∣∣∣∣ p̃n(x)
x + 1

∣∣∣∣ ∑
−26xkn6−1

n−1a−1=2n

∼ a−3=2n

∣∣∣∣ p̃n(x)
x + 1

∣∣∣∣ ∑
−26xkn6−1

xkn − xk+1; n

∼
∣∣∣∣∣a

−3=2
n p̃n(x)
x + 1

∣∣∣∣∣ : (3.2)

From (3.1) and (3.2) we deduce that

L := lim sup
n→∞

∫ ∞

0

∣∣∣∣a−3=2n
p̃n(x)
1 + x

∣∣∣∣
p

w(x) dx

. lim sup
n→∞

∫ ∞

0
|Ln+2(gn;Vn+2)(x)|pw(x) dx

. max
−26x6−1

|gn(x)|p ¡∞:

The proof will be complete if we can show that the integral in (1.7) is bounded by L as L is 6nite.
To see this, we proceed as follows: Let us de6ne for j¿ 0

Ijn = Ijn($) = [xjn + $an=n; xj−1; n − $an=n]; j = 2; 3; : : : ; n

and
OI jn = OI jn($) = [xj−1; n − $an=n; xj−1; n + $an=n]; j = 2; 3; : : : ; n:

Firstly using [13], we have for x∈ [xjn; xj−1; n], the ErdPos–Turan identity
ljn(x)wQ(x)w−1

Q (xjn) + lj−1; n(x)wQ(x)w−1
Q (xj−1; n)¿1:

Applying the triangle inequality to this identity we see that

|pnwQ(x)|
(

1
|p′

n(xjn)wQ(xjn)(x − xjn)| +
1

|p′
n(xj−1; n)wQ(xj−1; n)(x − xj−1; n)|

)
¿1:

Next let 0¡�¡ 1. Since for

x∈ Ijn($) ∩ [0; �an]

|x − xjn|¿$an=n and |x − xj−1; n|¿$an=n, we have using [11, Corollary 1:4(b), p. 205] that for

x∈ Ijn($) ∩ [0; �an];

16 |pnwQ(x)|
(

1
|p′

n(xjn)wQ(xjn)(x − xjn)| +
1

|p′
n(xj−1; n)wQ(xj−1; n)(x − xj−1; n)|

)

6 $
n
an
|pnwQ(x)|

(
1

|p′
n(xjn)wQ(xjn)| +

1
|p′

n(xj−1; n)wQ(xj−1; n)|

)

∼ $a1=2n |pnwQ(x)|:
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Thus for x∈ Ijn($) ∩ [0; �an], we learn that

|p̃nwQ(x)|= |pnwQ(x)||(x − y0)(x + y0)| ∼ a2n|pnwQ(x)|& a3=2n

and so consequently
n∑

j=2

∫
Ijn∩[0;�an]

|w−1
Q (x)=(1 + x)|pw(x) dx . L: (3.3)

By interchanging n for n+ 1, we deduce that
n+1∑
j=2

∫
Ij; n+1∩[0;�an+1]

|w−1
Q (x)=(1 + x)|pw(x) dx . L: (3.4)

We now claim that for a certain $

OI jn($) ∩ [0; �an]⊂ Ij; n+1($) ∩ [0; �an]: (3.5)

To see this, observe 6rst that using [11, Corollary 1:4(b), p. 205; 11, Corollary 1.3, (1:24), p. 205],
we have for |xjn|6�an and uniformly for n the identity

|xj;n+1 − xjn|&
∣∣∣∣∣pn(xj;n+1)wQ(xj;n+1)

p′
n(xjn)wQ(xjn)

∣∣∣∣∣ ∼ an

n
:

Moreover, using the interlacing properties of the zeros it follows quite easily that indeed

|xj;n+1 − xjn| ∼ |xj−1; n − xj;n+1| ∼ an

n
:

Thus (3.5) holds for some $. Hence, (3.3) becomes
n∑

j=2

∫
OI j; n∩[0;�an]

|w−1
Q (x)=(1 + x)|pw(x) dx

.
n+1∑
j=2

∫
Ij; n+1∩[0;�an+1]

|w−1
Q (x)=(1 + x)|pw(x) dx . L: (3.6)

By (3.4) and (3.6), we have∫ �an

0
|w−1

Q (x)=(1 + x)|pw(x) dx . L:

Thus, we deduce that∫ ∞

0
|w−1

Q (x)=(1 + x)|pw(x) dx . L

as required. The case x60 is similar. Suppose next that (b2) holds and that I=(−1; 1). We then pro-
ceed as above with some changes. Firstly, in place of (3.1) we conclude that for all f∈C0(− 1

2 ;− 1
4 ),

we have∫ 1

−1
|Ln+2(f; Vn+2)(x)|pw(x) dx . max

−1=26x6−1=4
|f(x)wQ(x)|p: (3.7)
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Then using [10, Theorem 1.2 p. 7; 10, Corollary 1:5(iii) p. 10; 10 Corollary 1:4(ii) p. 9], we conclude
that for 0¡x¡ 1 and uniformly for large enough n

|Ln+2(gn; x)|&
∣∣∣∣ p̃n(x)
x + 1=4

∣∣∣∣ ∑
−1=26xkn6−1=4

n−1

∼
∣∣∣∣ p̃n(x)
x + 1=4

∣∣∣∣ ∑
−1=26xkn6−1=4

xkn − xk+1; n

∼
∣∣∣∣ p̃n(x)
x + 1=4

∣∣∣∣
∼
∣∣∣∣ p̃n(x)
x + 1

∣∣∣∣ : (3.8)

This shows as above that

L := lim sup
n→∞

∫ 1

0

∣∣∣∣ p̃n(x)
1 + x

∣∣∣∣
p

w(x) dx

is 6nite and so the proof is complete if we can show that the integral in (1.7) is bounded by L. We
now proceed exactly as in the case I = R except we use [2, (3.1);13]. Finally suppose that I = R
and (b1) holds. Then we proceed as in [25] and the above using [26, Lemma 2]. This completes
the proof of Theorem 1.2.

The Proof of Corollary 1.3. Under the assumptions of Corollary 1.3, we may apply the method of
Lemma 2:3 in [14] and deduce that∥∥∥∥∥a1=2n pn(x)

w1=p(x)
1 + |x|

∥∥∥∥∥
p

Lp[0;x1n)

&

∥∥∥∥∥w
−1
Q (x)
1 + |x|w

1=p(x)(1− |x|=an + �n)−1=4
∥∥∥∥∥
p

Lp[0; x1n)

:

By the same argument as the proof of Theorem 1.2, we then have∥∥∥∥a1=2n
pn(x)
1 + x

w1=p(x)
∥∥∥∥
Lp[0;∞)

¡∞:

Applying a similar estimate to the case x¡ 0, gives the result.
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