
Journal of Computational and Applied Mathematics 137 (2001) 71–76
www.elsevier.com/locate/cam

On mean convergence of Hermite–Fej'er and Hermite
interpolation for Erdős weights
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Abstract

We investigate convergence of Hermite–Fej'er and Hermite interpolation polynomials in Lp (0¡p¡∞) for Erdős
weights. c© 2001 Elsevier Science B.V. All rights reserved.
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Keywords: Erdős weight; Hermite–Fej'er interpolation; Hermite interpolation; Mean convergence; Weighted approximation

1. Introduction and statement of main result

For a function f : (a; b)→R; −∞6 a¡b6∞ and a set

�n := {x1n; x2n; : : : ; xnn}; n¿ 1

of pairwise distinct nodes, let Hn[�n;f] and Ĥ n[�n;f] denote the Hermite–Fej'er interpolation poly-
nomial and Hermite interpolation polynomial of degrees 6 2n − 1 to f with respect to �n when
de>ned. Formally, Hn[�n;f] and Ĥ n[�n;f] are the unique polynomials of degree 6 2n−1 satisfying

Hn[�n;f](xjn)=f(xjn); H ′
n[�n;f](xjn)= 0

and

Ĥ n[�n;f](xjn)=f(xjn); Ĥ
′
n[�n;f](xjn)=f

′(xjn)

for j=1; 2; : : : ; n.
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The subject of convergence of Hermite, Hermite–Fej'er and Lagrange interpolation polynomials
for various systems of nodes, is a well established and widely studied subject. See [1–12,14,15,
17–25] and the references cited therein. Recently, there has been a resurgence of interest in study-
ing convergence questions for functions which are de>ned on the real line and may possibly be
unbounded there. As polynomials are unbounded on the real line, it has become customary to study
convergence questions in suitable weighted function spaces. Until now, the choice of positive even
weights

w :R→ (0;∞)

studied has been highly inJuenced by the following density theorem whose form below is due to
Carleson and Dzrabajan (see [16]).

2. Density on the real line

Let w := exp (−Q), where Q :R→R is even and Q(ex) is convex in (0;∞). Then the following
are equivalent:

(a) For every continuous function f :R→R with

lim
|x|→∞

(fw)(x)= 0

and for every �¿0, there exists a polynomial P such that

‖(f − P)w‖L∞(R)¡�:

(b) ∫
R

Q(x)
1 + x2

dx=∞:
Thus, in order to study convergence questions on the real line, we are already restricted in that our

choice of weight w should decay suMciently fast near ±∞. For this reason, it has been helpful to
distinguish between those classes of weights that are of polynomial growth at in>nity, the so-called
Freud class and those that are of faster than polynomial growth at in>nity, the so-called Erdős class.
See [13,15] and the references cited therein.

In this paper, we study mean convergence of Hermite and Hermite–Fej'er interpolation in Lp (0¡
p¡∞) for a class of fast decaying even Erdős weights on the real line. The underlying investigation
extends earlier work [20], where the case p=1 was covered. For Freud-type weights, results similar
to ours appear in [12]. To this end, we limit ourselves to weights and functions that cover natural
examples and treat the general Lp theory which is typically more diMcult. As a by-product of our
investigation, we are, in some cases, able to recover the results of Lubinsky and Rabinowitz [20]
under weaker assumptions than those appearing in that paper. The main feature of our weights is
that they are even and of faster than smooth polynomial decay at in>nity. For example, our results
will cover the natural examples (see [13]),

wk;�(x) := exp(−Qk;�(x));
where

Qk;�(x) := expk (|x|�); k¿ 1; �¿1
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and

wA;B(x) := exp (−QA;B(x));
where

QA;B(x)= exp (log(A+ x2))B; B¿1:

Here, expk(; )= exp(exp (· · · (; ))) denotes the kth iterated exponential and A is a large enough but
>xed absolute constant.

More precisely, our results hold for the following subclass of weights w from [13] of which the
above weights are natural examples and for which sharp enough estimates for pn(w2) (see below)
and their zeroes are obtained.

3. Class of weights

De�nition 1. Let w := exp (−Q), where Q :R→R is even and continuous; Q(j)¿ 0 in (0;∞) for
j=0; 1; 2; and the function

T (x) := 1 + xQ′′(x)=Q′(x)

is increasing in (0;∞) with

lim
x→∞ T (x)=∞; T (0+) := lim

x→ 0+
T (x)¿1:

Assume that for some constants C1; C2; C3; C4¿0 independent of x,

C16T (x)
/(

xQ′(x)
Q(x)

)
6C2; x¿C3 (1)

and

T (x)6C4(Q(x))�; x→∞: (2)

We shall denote by E, the class of all such weights.

4. Interpolation points

As a suitable set of interpolation points, we recall (see [9]) that given w∈E as above, there exists
a unique system of orthonormal polynomials

pn(w2; x)= �n(w2) xn + · · · ; �n(w2)¿0; x∈R
satisfying∫

R
pn(w2; x)pm(w2; x)w2(x) dx= �mn; m; n=0; 1; 2; : : :

with n real and simple zeroes which we order as

xn;n(w2)¡xn−1; n(w2)¡ · · ·¡x2; n(w2)¡x1; n(w2):

These zeroes will serve as our interpolation points which will again be denoted by �n.
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Recently in [12], two of us found suMcient conditions for weighted mean convergence of Hermite
and Hermite–Fej'er interpolation polynomials in Lp (0¡p¡∞), for a large class of even Freud
weights with respect to �n. For notational simplicity, we recall the main result of that paper for

w(x) := exp(−|x|�); �¿1; x∈R:

5. Freud weights

Theorem 1. Let 0¡p¡∞; �∈R; �¿0; �̂ :=max{�; 1} and let Hn[; ] and Ĥ n[; ] be the Hermite–
Fej>er and Hermite interpolation polynomials with respect to the zeroes of pn(w2). Assume that
for 0¡p6 2;

�¿− �̂+ 1=p

and for p¿2

−1=�(�̂+ �+ 1=p) + 1=3(1− 2=p)¡0:

Then;

lim
n→∞ ‖(f(x)− Hn[f](x))w2(x)(1 + |x|)−�‖Lp(R) = 0

for every continuous function f :R→R satisfying

lim
|x|→∞

|f(x)|w2(x)(1 + |x|�)= 0:

Moreover;

lim
n→∞ ‖(f(x)− Ĥ n[f](x))w2(x)(1 + |x|)−�‖Lp(R) = 0

for f∈C1(R) satisfying the above and

sup
x∈R

|f′(x)|w2(x)(1 + |x|�)¡∞:

Our aim in this paper is to extend the results of Jung and Kwon [12] to the class E. Using the
methods of Jung and Kwon [12] and applying the well-known estimates of Levin et al. [13], we are
able to prove:

6. Erdős weights

Theorem 2. Let w∈E; 0¡p¡∞; �∈R; and �¿0. Assume that

�¿max
{
0;
2
3

(
1
2
− 1
p

)}
: (3)

Then

lim
n→∞ ‖(f(x)− Hn[f](x))w2(x)(1 + Q(x))−�‖Lp(R) = 0
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for every continuous function f :R→R satisfying

lim
|x|→∞

|f(x)|w2(x)(log(|x|1+�)T (x)1=2)= 0: (4)

Moreover;

lim
n→∞ ‖(f(x)− Ĥ n[f](x))w2(x)(1 + Q(x))−�‖Lp(R) = 0

for f∈C1(R) satisfying (4) and

sup
x∈R

|f′(x)|w2(x)(log(|x|1+�T (x)1=2)¡∞: (5)

Our main observation is that for Erdős weights and our given set of interpolation points �n, a
weighting factor which decays as a negative power of (1 + Q), is suMcient for mean convergence
of Hermite and Hermite–Fej'er interpolation. A similar eNect occurs for Lagrange interpolation. See
[7,8,3]. This is in sharp contrast to Freud-type weights, where for the given system of nodes, a
polynomial decay factor is suMcient. See Theorem 1. Recently, for weighted Lagrange interpolation
on the real line and [ − 1; 1], an extended system of interpolation nodes has been found to yield
better results for mean and uniform convergence. See [24,1,2,4–6,17–19] and the references cited
therein. It is still an open question as to whether this extended system of nodes will yield better
mean convergence results for positive operators such as ours. Concerning uniform convergence for
Freud weights, the answer is no (see [24]).
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