2,734 research outputs found

    Progressive Joint Low-light Enhancement and Noise Removal for Raw Images

    Full text link
    Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in a low signal-to-noise ratio. Most of the previous works on low-light image processing focus either only on a single task such as illumination adjustment, color enhancement, or noise removal; or on a joint illumination adjustment and denoising task that heavily relies on short-long exposure image pairs collected from specific camera models, and thus these approaches are less practical and generalizable in real-world settings where camera-specific joint enhancement and restoration is required. To tackle this problem, in this paper, we propose a low-light image processing framework that performs joint illumination adjustment, color enhancement, and denoising. Considering the difficulty in model-specific data collection and the ultra-high definition of the captured images, we design two branches: a coefficient estimation branch as well as a joint enhancement and denoising branch. The coefficient estimation branch works in a low-resolution space and predicts the coefficients for enhancement via bilateral learning, whereas the joint enhancement and denoising branch works in a full-resolution space and progressively performs joint enhancement and denoising. In contrast to existing methods, our framework does not need to recollect massive data when being adapted to another camera model, which significantly reduces the efforts required to fine-tune our approach for practical usage. Through extensive experiments, we demonstrate its great potential in real-world low-light imaging applications when compared with current state-of-the-art methods

    Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications

    Get PDF
    As an alternative to the time-consuming solder pre-forms and pastes currently used, a co-electroplating method of eutectic Au-Sn alloy was used in this study. Using a co-electroplating process, it was possible to plate the Au-Sn solder directly onto a wafer at or near the eutectic composition from a single solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees without using any flux. In the case where the samples were reflowed at 300 degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and (Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400 degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and (Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic lamellae in the bulk solder coarsened.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.

    Get PDF
    Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration

    GPS-GLASS: Learning Nighttime Semantic Segmentation Using Daytime Video and GPS data

    Full text link
    Semantic segmentation for autonomous driving should be robust against various in-the-wild environments. Nighttime semantic segmentation is especially challenging due to a lack of annotated nighttime images and a large domain gap from daytime images with sufficient annotation. In this paper, we propose a novel GPS-based training framework for nighttime semantic segmentation. Given GPS-aligned pairs of daytime and nighttime images, we perform cross-domain correspondence matching to obtain pixel-level pseudo supervision. Moreover, we conduct flow estimation between daytime video frames and apply GPS-based scaling to acquire another pixel-level pseudo supervision. Using these pseudo supervisions with a confidence map, we train a nighttime semantic segmentation network without any annotation from nighttime images. Experimental results demonstrate the effectiveness of the proposed method on several nighttime semantic segmentation datasets. Our source code is available at https://github.com/jimmy9704/GPS-GLASS.Comment: ICCVW 202

    Batalin-Tyutin Quantization of the Chiral Schwinger Model

    Get PDF
    We quantize the chiral Schwinger Model by using the Batalin-Tyutin formalism. We show that one can systematically construct the first class constraints and the desired involutive Hamiltonian, which naturally generates all secondary constraints. For a>1a>1, this Hamiltonian gives the gauge invariant Lagrangian including the well-known Wess-Zumino terms, while for a=1a=1 the corresponding Lagrangian has the additional new type of the Wess-Zumino terms, which are irrelevant to the gauge symmetry.Comment: 15 pages, latex, no figures, to be published in Z. Phys. C (1995

    Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Get PDF
    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ~0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their moving along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by spacetime inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals
    • …
    corecore