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ABSTRACT

We quantize the chiral Schwinger Model by using the Batalin-Tyutin formalism. We
show that one can systematically construct the �rst class constraints and the desired
involutive Hamiltonian, which naturally generates all secondary constraints. For a > 1,
this Hamiltonian gives the gauge invariant Lagrangian including the well-known Wess-
Zumino terms, while for a = 1 the corresponding Lagrangian has the additional new

type of the Wess-Zumino terms, which are irrelevant to the gauge symmetry.
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I. Introduction

Batalin and Fradkin (BF) [1] had proposed a new kind of quantization procedure

for second class constraint systems. When combined with Batalin et al. (BFV) [2]

formalism for �rst class constraint systems, the BFV formalism is particularly powerful

for deriving a covariantly gauge-�xed action in con�guration space. Fujiwara et al.

(FIK) [3] have proposed an improved treatment of anomalous gauge theories based on

the BF formalism. We have applied the FIK method to the bosonized chiral Schwinger

model (CSM) [4]. Recently, Banerjee, Rothe, and Rothe [5] have pointed out that the

FIK analyses [3,4] are not a systematic application of the BFV formalism. After their

work, Banerjee [6] has systematically applied Batalin-Tyutin (BT) Hamiltonian method

[7] to the second class constraint system of the abelian Chern-Simons (CS) �eld theory

[8-10]. As a result, he has obtained the new type of an abelian Wess{Zumino (WZ)

action, which is irrelevant to the gauge symmetry. Very recently, we have quantized

the nonabelian case [11], and the abelian self-dual massive theory [12] by using the

BT formalism. As shown in these works, the nature of second class constraint algebra
also originates from the symplectic structure of the CS term as well as the local gauge
symmetry breaking e�ect. There are some other interesting examples in this approach
[13].

On the other hand, there has been a great progress in the understanding of the
physical meaning of anomalies in quantum �eld theory through the study of the CSM.
Jackiw and Rajaraman [14] showed that a consistent and unitary, quantum �eld theory
is even possible in the gauge non-invariant formulation. Alternatively, a gauge invariant
version [15] can be obtained by adding aWess-Zumino action to the gauge non-invariant

original theory, as was proposed by Faddeev and Shatashvili [16]. Since their works,
the CSM have been still analyzed by many authors as an archetype of anomalous gauge
theory [4,5,17].

In the present paper, we shall apply the BT method to the bosonized CSM having
still novel features. In Sec. II, we consider the bosonized CSM with a > 1, which has

two second class constraints. Through the BT analysis, we will obtain the well-known
WZ term to cancel the usual gauge anomaly after we convert the original second class
system into the fully �rst class one. In Sec. III, we consider the bosonized CSM for

a = 1, which has four second class constraints. In contrast to the a > 1 case, we
will obtain an additional new WZ action, which cannot be obtained in the usual path-

integral framework, as well as the usual WZ action needed to cancel the gauge anomaly.
In fact, the usual WZ action is not enough to make the second class system the �rst

class one for a = 1. Sec. IV is devoted to a conclusion.
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II. CSM in the case of a > 1

In this section, we consider the bosonized CSM model in the case of a > 1 [16]

SCSM =
Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

�
; (1)

where ��� = diag.(1,-1), �01 = 1, and a is a regularization ambiguity [14], which is

de�ned for calculating the fermionic determinant of the fermionic CSM. The canonical

momenta are given by

�0 = 0;

�1 = F01 = _A1 � @1A0;

�� = _� + e(A0 �A1); (2)

where the overdot means the time derivative. Following the usual Dirac's standard

procedure [19], there are one primary constraint


1 � �0 � 0; (3)

and one secondary constraint


2 � @1�
1 + e�� + e@1�+ e2A1 + (a� 1)e2A0 � 0: (4)

This constraint is obtained by conserving 
1 with the total Hamiltonian

HT = Hc +
Z
dx u
1; (5)

where Hc is the canonical Hamiltonian as follows

Hc =
Z
dx

�
1

2
(�1)2 +

1

2
(��)

2 +
1

2
(@1�)

2 � e(�� + @1�)(A0 �A1)

�A0@1�
1 � 1

2
ae2f(A0)

2 � (A1)
2g+ 1

2
e2(A0 �A1)

2

�
; (6)

and we denote a Lagrange multiplier u. Note that by �xing the Lagrange multiplier u

as follows

u = @1A1 �
1

a� 1
�1; (7)

no further constraints are generated via this procedure. Then, the constraints 
�(� =

1; 2) form the second class algebra as follows

���(x; y) � f
�(x);
�(y)g

= e2(a� 1)

 
0 �1
1 0

!
�(x� y): (8)
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Following the BT approach [7], we introduce new auxiliary �elds �� in order to

convert the second class constraint 
� into the �rst class in an extended phase space,

and assume that the Poisson algebra of the new �elds is given by

f��(x);��(y)g = !��(x; y); (9)

where !�� is an antisymmetric matrix. Then, the modi�ed constraints in the extended

phase space are given by

~
�(�
�; A�;�

�) = 
� +
1X
n=1


(n)
� ; 
(n)

� � (��)n (10)

satisfying the boundary condition, ~
�(�
�; A�; 0) = 
�. The �rst order correction term

in the in�nite series [7] is given by


(1)
� (x) =

Z
dy X��(x; y)�

�(y); (11)

and the �rst class constraint algebra of ~
� requires the condition as follows

4��(x; y) +
Z
dw dz X��(x;w)!

��(w; z)X��(z; y) = 0: (12)

As was emphasized in Ref. [6,11,12], there is a natural arbitrariness in choosing !��

and X�� from Eq. (9) and Eq. (11), which corresponds to the canonical transformation
in the extended phase space [1,7]. Without any loss of generality, we take the simple

solutions as

!��(x; y) =

 
0 1
�1 0

!
�(x� y);

X��(x; y) = e
p
a� 1

 
1 0

0 1

!
�(x� y); (13)

which are compatible with Eq. (12), and this choice considerably simpli�es the al-
gebraic manipulations. As a result, using Eqs. (10), (11) and (13), the new set of
constraints is found to be

~
� = 
� + e
p
a� 1 ��; (14)

which are strongly involutive,
f~
�; ~
�g = 0: (15)

In other words, we can make the second class constraints the �rst class by introducing

the new �elds in the extended phase space. Therefore, we have all the �rst class

constraints in the extended phase space by applying the BT formalism systematically.
Observe further that only 
(1)

� contributes in the series (10) de�ning the �rst class
constraint. All higher order terms given by Eq. (10) vanish as a consequence of the

proper choice (13).
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Next, we derive the corresponding involutive Hamiltonian in the extended phase

space. It is given by the in�nite series [7],

~H(��; A�;�
�) = Hc +

1X
n=1

H(n); H(n) � (��)n (16)

satisfying the initial condition, ~H(��; A�; 0) = Hc. The general algebraic form for the

involution of ~H is given by

H(n) = �1

n

Z
dxdydz ��(x)!��(x; y)X

�(y; z)G(n�1)
 (z); (n � 1); (17)

where the generating functionals G(n)
� are given by

G(0)
� = f
(0)

� ;Hcg;
G(n)
� = f
(0)

� ;H(n)gO + f
(1)
� ;H(n�1)gO (n � 1); (18)

where the symbol O represents that the Poisson brackets are calculated among the
original variables, i.e., O = (��; A�). Here, !�� and X�� are the inverse matrices of

!�� and X��, respectively. Explicit calculations of G
(0)
� yield

G
(0)
1 = 
2; (19)

G
(0)
2 = e2�1 + e2(a� 1)@1A1; (20)

which are substituted in Eq. (17) to obtain H(1),

H(1) =
1

e
p
a� 1

Z
dx[G

(0)
2 �1 � 
2�

2]: (21)

This is inserted back in Eq. (18) in order to deduce G(1)
� as follows

G
(1)
1 = e

p
a� 1 �2; (22)

G
(1)
2 = �e

p
a� 1 @21�

1 +
e3p
a� 1

�1; (23)

which then yield H(2) from Eq. (17),

H(2) =
Z
dx

"
1

2
(@1�

1)2 +
e2

2(a� 1)
(�1)2 � 1

2
(�2)2

#
: (24)

Since G(n)
� = 0 (n � 2), the �nal expression for the Hamiltonian after the n = 2 �nite

truncations is given by
~H = Hc +H(1) +H(2); (25)

which is strongly involutive with the �rst class constraints (14),

f~
�; ~Hg = 0: (26)
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Before performing the momentum integrations to obtain the partition function in

the con�guration space, it seems to appropriate to comment on the strongly involutive

Hamiltonian (25). If we use the above Hamiltonian (25), we cannot naturally generate

the �rst class Gauss' law constraint ~
2 from the time evolution of the primary constraint
~
1. Therefore, in order to avoid this problem as the case of the self-dual massive model

[12], we use the equivalent �rst class Hamiltonian without any loss of generality, which

only di�ers from the Hamiltonian (25) by adding a term proportional to the �rst class

constraint ~
2 as follows

~H
0

= ~H +
Z
dx

1

e
p
a� 1

�2~
2: (27)

Then, this modi�ed Hamiltonian ~H
0

consistently generates the Gauss' law constraint

such that f~
1; ~H
0g = ~
2 and f~
2; ~H

0g = 0. Note that when we act this Hamiltonian

on physical states, the di�erence between ~H 0 and ~H is trivial because such states

are annihilated by the �rst class constraint. Similarly, the equations of motion for

observables (i.e., gauge invariant variables) will also be una�ected by this di�erence

since ~
2 can be regarded as the generator of the gauge transformations.
Now we derive the Lagrangian including the WZ term, which describes the �rst

class system, corresponding to the Hamiltonian (27). The �rst step is to identify the
new variables �� occurring in the extended phase space as canonically conjugate pairs
in the Hamiltonian formalism,

�� �
p
a� 1

 
�;

1

(a� 1)
��

!
; (28)

satisfying Eqs. (9) and (13). Then, the starting phase space partition function is given
by the Faddeev formula [20],

Z =
Z
DA�D��D�D��D�D��

2Y
�;�=1

�(~
�)�(��) det j f~
�;��g j eiS
0

; (29)

where
S0 =

Z
d2x

�
�� _A� +��

_�+��
_� � ~H0

�
(30)

with the Hamiltonian density ~H0 corresponding to ~H 0, which is now expressed in terms

of f�;��g instead of ��. The gauge �xing conditions �� are chosen so that the de-

terminant occurring in the functional measure is nonvanishing. Furthermore, �� may
be assumed to be independent of the momenta so that these are considered as the
Faddeev-Popov type gauge conditions.

Next, we perform the momentum integrations to obtain the con�guration space

partition function. First, the �0 integration is trivially performed by exploiting the

delta function �(~
1) = �[�0+ e(a� 1)�] . Then, after exponentiating the remaining
delta function �(~
2) = �[@1�

1 + e�� + e@1�+ e2A1 + (a� 1)e2A0 � e��] with Fourier
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variable � as �(~
2) =
R
D�e�i

R
d2x�~
2, and transforming A0 ! A0 + �, and integrating

the other momentum variables �� and �1, we obtain the following intermediate action

S =
Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

+ �f(a� 1)e(@1A1 � _A0 � _�) +
1

2
(a� 1)@21� � e���@�A�g

+ ��f _� � e� � 1

2(a� 1)
��g �

1

2
(a� 1)e2�2

#
; (31)

and the corresponding measure is given by

[D�] = DA�D�D�D��D�
2Y

�=1

� (�� [A0+ �;A1; �]) det j f~
�;��g j : (32)

At this stage, the original theory is simply reproduced, if we choose the usual
unitary gauge condition

�� = (�;��): (33)

Note that this gauge �xing is consistent because when we take the gauge �xing condition

� � 0, the condition �� � 0 is naturally generated from the time evolution of �, i.e.,
_� = f�; ~H 0g = 1

(a�1)
�� � 0. Then, one can easily realize that the new �elds �� are

nothing but the gauge degrees of freedom, which can be removed by utilizing the gauge
symmetry.

Finally, we perform the Gaussian integration over ��. Then all terms including �

in the action are canceled out, the resultant action is obtained as follows

S = SCSM + SWZ ;

SCSM =
Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
ae2A�A

�

�
;

SWZ =
Z
d2x

�
1

2
(a� 1)@��@

�� � e�f(a� 1)��� + ���g@�A�

�
; (34)

where SWZ is the well-known WZ term, which is needed to cancel the gauge anomaly.

On the other hand, the corresponding Liouville measure just comprises the con�gura-

tion space variables as follows

[D�] = DA�D�D�D�
2Y

�=1

� (��[A0+ �;A1; �]) det j f~
�;��g j : (35)

Starting from the Lagrangian (34), we can easily reproduce the same set of all the �rst
class constraints (14) and the modi�ed Hamiltonian (27) e�ectively equivalent to the

strongly involutive Hamiltonian (25).
Now, it seems appropriate to comment on the momentum integration by taking the

di�erent order. After integrating �0, exponentiating �(~
2), transforming A0 ! A0+ �,
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let us integrate �� and �1 in order. Then we obtain another intermediate action as

follows

S =
Z
d2x

�
�1

4
F��F

�� +
1

2
(a� 1)@��@

�� � ef(a� 1)��� + ���g�@�A�

+
1

2
ae2A�A

� + �f1
2
@21�+ e(��� � ���)@�A�g

�1

2
f�� � e(A0 �A1)gf�� � e(A0 �A1)� 2 _�g

�
; (36)

and the corresponding measure is given by

[D�] = DA�D�D��D�D�
2Y

�=1

� (��[A0 + �;A1; �; �]) det j f~
�;��g j : (37)

In this case, if we choose the matter gauge �xing condition � � 0 [18], then we obtain

the consistency condition from the time evolution of � as follows

_� = f�; ~H 0g = �� � e(A0�A1) � 0: (38)

Therefore, if we choose the above unitary gauge as follows

�� = (�;�� � eA0 + eA1) ; (39)

we easily reproduce the equivalent anomalous CSM [18]. Note that the WZ �eld �

becomes a dynamical �eld instead of the original matter �eld � in this equivalent
model. Furthermore, if we perform the Gaussian integration over �� without choosing
this gauge at this stage, we obtain the same resultant action (34). Therefore, we
have explicitly shown that the �nal desired result is independent of the order of the
momentum integration. Furthermore, if we add a term proportional to the constraint
~
1, which is trivial when acting on the physical Hilbert space, to the Hamiltonian (27)
as follows

~Hc = ~H 0 +
Z
dx u~
1; (40)

one can exactly reproduce the BFV Hamiltonian ~Hc of the CSM obtained in Ref. [4]

with the exactly same �rst class constraints (14) with the new �elds (28). Then, one

can easily reconstruct the covariant e�ective action of the CSM, which is invariant
under the BRST transformation [4].

III. CSM in the case a = 1

In this section, we consider the CSM in the case of a = 1, which is given by

S =
Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
e2A�A

�

�
: (41)
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The canonical momenta are given by

�0 � 0;

�1 = F01 = _A1 � @1A0;

�� = _� + e(A0 �A1): (42)

There are one primary constraint


1 � �0 � 0; (43)

and three secondary constraints


2 � @1�
1 + e�� + e@1�+ e2A1;


3 � e2�1;

!4 � �e3�� � e3@1�+ e4A0 � 2e4A1: (44)

Note that these constraints are obtained by conserving the constraints with the total

Hamiltonian,

HT = Hc +
Z
dx u
1; (45)

where Hc is the canonical Hamiltonian,

Hc =
Z
dx

�
1

2
(�1)2 +

1

2
(��)

2 +
1

2
(@1�)

2 � e(�� + @1�)(A0 �A1)

A0@1�
1 � e2A0A1 + e2(A1)

2
i
; (46)

and we denote the Lagrange multiplier u. By �xing the Lagrange multiplier u as follows

u =
1

e
@1�� +

1

e
@21� + 2�1 + 2@1A1; (47)

no further constraints are generated via this procedure. We �nd that all the constraints

are fully second class constraints. However, in order to carry out the simple algebraic
manipulations, it is essential to rede�ne !4 by using 
1 as follows


4 � !4 + e2@1
1

= �e3�� � e3@1�+ e4A0 � 2e4A1 + e2@1�
0; (48)

although the rede�ned constraints are still completely the second class in contrast to the
CS theories [6,11]. Otherwise, one will have a complicated constraint algebra including

the derivative terms which are di�cult to handle. Then, the simpli�ed second class

constraint algebra for 
�(� = 1; � � �; 4) is given by

���(x; y) � f
�(x);
�(y)g

= e4

0
BBB@

0 0 0 �1
0 0 1 0

0 �1 0 2e2

1 0 �2e2 0

1
CCCA �(x� y): (49)
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Following the BT approach [7], we introduce the matrix (9), which is compatible

with the new �elds �� as follows

!��(x; y) =

0
BBB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1
CCCA �(x� y): (50)

Then the other matrix X�� in Eq. (11) is easily obtained by solving Eq. (12) with ���

given by Eq. (49),

X��(x; y) = e2

0
BBB@
�1 0 0 0

0 �1 0 0

e2 0 1 0

0 e2 0 �1

1
CCCA �(x� y): (51)

Similar to the a > 1 case, there is also an arbitrariness in choosing !��, which would

naturally be manifested in Eq. (50). However, as has also been evidenced in other
calculations [6,11,14], these choices of Eqs. (50) and (51) give remarkable algebraic
simpli�cations for the case of a = 1. Using Eqs. (10), (11), (50) and (51), the new set
of constraints is found to be

~
1 = 
1 � e2�1 ;

~
2 = 
2 � e2�2 ;

~
3 = 
3 + e4�1 + e2�3 ;

~
4 = 
4 + e4�2 � e2�4 ; (52)

which are strongly involutive as those should be

f~
�; ~
�g = 0: (53)

Recall the �� are the new variables satisfying the algebra (9) with !�� given by Eq.
(50). Therefore, we obtain the fully �rst class constraint system in the extended phase
space.

The next step is to obtain the involutive Hamiltonian including the new �elds ��.

It is noteworthy that there are only two terms 
� and 
(1)
� in the expansion (52) due

to the intuitive choices (50) and (51). The generating functionals G(n)
� are obtained

from Eq. (18) as follows,

G
(0)
i = 
i+1 (i = 1; 2) ;

G
(0)
3 = 
4 � e2@1
1 ;

G
(0)
4 = e2@21�

1 � 2e4�1 � e4@1A1; (54)

which are substituted in Eq. (17) to obtain H(1),

H(1) = � 1

e2

Z
dx [�1(e2
3 +G

(0)
4 )� �2(e2
2 + 
4 � e2@1
1)� �3
3 � �4
2]: (55)
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This is inserted back in Eq. (18) to deduce G(1)
� as follows

G
(1)
1 = �e2�2;

G
(1)
2 = e4�1 + e2�3;

G
(1)
3 = e4@1�

1 + e4�2 � e2�4;

G
(1)
4 = �2e6�1 + 2e4(@1)

2�1 + e4@1�
2 � 2e4�3; (56)

which then yield H(2)

H(2) =
Z
dx

�
1

2
e4(�1)2 + e2�1�3 + e2(@1�

1)2 � e2�1@1�
2 � �2�4 +

1

2
(�3)2

�
: (57)

Since G(n)
� = 0 (n � 2), after the n = 2 �nite truncations the �nal expression for the

desired Hamiltonian is given by

~H = Hc +H(1) +H(2); (58)

which is involutive,

f~
�; ~Hg = 0: (59)

According to the usual BT formalism, this formally completes the operatorial, abelian
conversion of the original second class system with the Hamiltonian Hc and the con-
straints 
� into the �rst class with the Hamiltonian ~H and the constraints ~
�.

However, similar to the a > 1 case, if we use the above Hamiltonian, we cannot
naturally generate the �rst class constraints ~
i(i = 2; 3; 4) from the time evolution
of the primary constraint ~
1. In order to avoid this situation, we also use another
equivalent �rst class Hamiltonian without any loss of generality, which di�ers from the
involutive Hamiltonian (58) by adding terms proportional to the �rst class constraint
~
� as follows

~H
0

= ~H + �1~
3 �
1

e2
�2(~
3 + e2~
2)�

1

e2
�3 ~
3 �

1

e2
�4 ~
2; (60)

which is easily found through the simple algebraic manipulations of the new �elds ��

with !��. Then, this Hamiltonian ~H
0

automatically generates the �rst class constraints
such that f~
i; ~H

0g = ~
i+1 (i = 1; 2; 3) and f~
4; ~H
0g = 0:

We now extract out the Lagrangian corresponding to the Hamiltonian (60). The
�rst step is to identify the new variables �� as canonically conjugate pairs in the

Hamiltonian formalism,

�� � (
1

e
�;�1

e
�;�e��; e��) (61)

satisfying Eqs. (9) and (50). The starting phase space partition function is then given

by the Faddeev formula [20],

Z =
Z
DA�D��D�D��D�D��D�D��

4Y
�;�=1

�(~
�)�(��) det j f~
�;��g j eiS
0

; (62)
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where

S0 =
Z
d2x

�
�� _A� +��

_�+��
_� +�� _�� ~H0

�
(63)

with the Hamiltonian density ~H0 corresponding to ~H 0, which is now expressed in terms

of f�;��; �;��g instead of ��. As in the previous section, the gauge �xing conditions

�� may be also assumed to be independent of the momenta so that these are considered

as the Faddeev-Popov type gauge conditions.

Next, to obtain the partition function in the con�guration space, we perform the

momentum integrations by taking the proper order for more simpler calculation without

any loss of generality. First, the �0, �� and �� integrations are trivially performed by

exploiting the delta functions �(~
1) = �[�0 � e�], �(~
4) = �[�e3�� � e3@1� +

e4A0 � 2e4A1 � e3�� e3�� + e3@1�], and �(~
3) = �[e2�1 + e3� � e3��]. Then, after

exponentiating the remaining delta function �(~
2) = �[@1�
1 + e�� + e@1� + e2A1 +

(a�1)e2A0� e��] with Fourier variable � as �(~
2) =
R
D�e�i

R
d2x�~
2 and transforming

A0 ! A0 + �, we obtain the action as follows

S =
Z
d2x

�
�1

2
@��@

��+
1

2
e2A�A

� + e(��� � ���)A�@��

+�@21� + �@1� � _�@1�� eA1��
1

2
�2 � �@1�� eA1

_� + _�@1� + _��

+e����@�A� +
1

2
_�2 � _� _� � � _�+�1( _A1 � @1A0 +

1

e
_�+

1

e
@21�)

�
; (64)

and the corresponding measure is given by

[D�] = DA�D�D�D�D�1D�
4Y

�=1

� (��[A0 + �;A1; �; �; �]) det j f~
�;��g j : (65)

Finally, we perform the Gaussian integration over �1. The resultant action is
obtained as follows

Stot = SCSM + SWZ + SNWZ ;

SCSM =
Z
d2x

�
�1

4
F��F

�� +
1

2
@��@

��+ eA�(�
�� � ���)@��+

1

2
e2A�A

�

�
;

SWZ = �
Z
d2x[e����@�A�];

SNWZ =
Z
d2x

�
�(@1�+ eA1 + _�� @1�)( _� + �) +

1

2
f( _�)2 � �2g

� 1

2e2
( _�+ @21�)

2 + e�@�A
�

�
; (66)

where SWZ is a usual WZ term needed to cancel the gauge anomaly, and SNWZ is a

new type of WZ term, which is irrelevant to the gauge symmetry. Note that the new
type of WZ term SNWZ as well as the well{known WZ term SWZ should be needed to
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make the second class system into the �rst class. On the other hand, the corresponding

nontrivial Liouville measure just comprises the con�guration space variables as follows

[D�] = DA�D�D�D�D��[F01 +
1

e
( _�+ @21�)]

4Y
�=1

f�(��[A0 + �;A1; �; �; �])gdet j f~
�;��g j; (67)

where �[F01 + e�1( _� + @21�)] is expressed by
R
D�1e�i

R
d2x[F01+e

�1( _�+@2
1
�)]�1

. Note that

although the Maxwell term is disappeared as the cases of the conventional phase space

approach [2,21] through the momentum integration due to the constraint 
3 in Eq.

(44), we reintroduce this term into the action (64) because we have the �-function

related to F01 in the measure part. In contrast to the case of a > 1, from the action

Stot including the term of the phase space variable �1 due to the appearance of the

�-function in the measure instead of the Lagrangian (64) including only con�guration

space variables, i.e., at the level of action (66), we can only reproduce the same set of all

the �rst class constraints (52) and the modi�ed Hamiltonian (58). However, although
we have succeeded to obtain the �rst class system for the case of a = 1, the �nal theory
has not the gauge symmetry due to the presence of the non-trivial �{function in the
measure part. Therefore, through this analysis we have learned that in general the �rst
class system do not always need to have the gauge symmetry. However, similar to the

a > 1 case, if we add terms proportional to the constraints ~
i; i:e:;

~Hc = ~H 0 +
Z
dx [(u� 1

e2
@1
2)~
1 �

1

e2
@1
1

~
2]; (68)

which is trivial when acting on the physical Hilbert space, to the Hamiltonian (58), we
can exactly reproduce the BFV Hamiltonian ~Hc and the corresponding BRST invariant
Lagrangian of the CSM obtained in Ref. [4].

IV. Conclusion

We have quantized the bosonized CSM having the di�erent algebra of the con-
straints depending on the regularization parameter a by using the BT formalism. We
have shown that one can systematically construct the �rst class constraints and the
desired involutive Hamiltonian, which naturally generates all the secondary constraints

including the Gauss constraint. For a > 1, this Hamiltonian gives the gauge invariant

Lagrangian including the well-known WZ terms, while for a = 1 the corresponding
Lagrangian has the new type of the WZ terms, which are irrelevant to the gauge sym-
metry and cannot be obtained in the usual path-integral framework, as well as the

usual WZ term to cancel the gauge anomaly.
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