1,157 research outputs found

    Preliminary Study on the Fabrication of Particulate Fuel through Pressureless Sintering Process

    Get PDF
    U-10wt%Zr spherical particles for use as particulate fuel were prepared by centrifugal atomization and subjected to pressureless sintering, which is one of the simplest powder processing techniques. At sintering temperature of 1100°C for 30 or 60 min, all samples ranging from +50 to −325 mesh showed no apparent bonding between the particles. However, at 1150°C (80 min), all samples formed a bulk body and the microstructures showed apparent sintering stages. Particularly, sample B (50–70 mesh) and sample C (70–100 mesh) showed pore characteristics suitable for a particulate fuel. The results suggest that pressureless sinterability for U-10Zr particulate fuel can be improved by adding small-size (–325 mesh) particles

    Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Get PDF
    Background: Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25-70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25-70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.This work was supported by the Korea Ministry of Environment and The Eco-Technopia 21 Project (091-091-081)

    TAZ Suppresses NFAT5 Activity through Tyrosine Phosphorylation

    Get PDF
    Transcriptional coactivator with PDZ-binding motif (TAZ) physically interacts with a variety of transcription factors and modulates their activities involved in cell proliferation and mesenchymal stem cell differentiation. TAZ is highly expressed in the kidney, and a deficiency of this protein results in multiple renal cysts and urinary concentration defects; however, the molecular functions of TAZ in renal cells remain largely unknown. In this study, we examined the effects of osmotic stress on TAZ expression and activity in renal cells. We found that hyperosmotic stress selectively increased protein phosphorylation at tyrosine 316 of TAZ and that this was enhanced by c-Abl activation in response to hyperosmotic stress. Interestingly, phosphorylated TAZ physically interacted with nuclear factor of activated T cells 5 (NFAT5), a major osmoregulatory transcription factor, and subsequently suppressed DNA binding and transcriptional activity of NFAT5. Furthermore, TAZ deficiency elicited an increase in NFAT5 activity in vitro and in vivo, which then reverted to basal levels following restoration of wild-type TAZ but not mutant TAZ (Y316F). Collectively, the data suggest that TAZ modulates cellular responses to hyperosmotic stress through fine-tuning of NFAT5 activity via tyrosine phosphorylation.open3

    Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system

    Get PDF
    Cellular senescence is regulated by specific genes in many organisms. The identification and functional analysis of senescence-associated genes could provide valuable insights into the senescence process. Here, we employed a new and improved differential display reverse transcription-polymerase chain reaction (DDRT-PCR) method that involves annealing control primers (ACPs) to identify genes that are differentially expressed in human umbilical endothelial cells during replicative senescence. Using 120 ACPs, we identified 31 differentially expressed genes (DEGs). Basic local alignment search tool (BLAST) search revealed 29 known genes and two unknown genes. Expression levels of the 29 known genes were confirmed by real-time quantitative RT-RCR and by Western blotting for eight of these genes. CD9 antigen, MHC class I chain-related sequence A (MICA) and cell division cycle 37 homolog (CDC37) were up-regulated, and bone morphogenetic protein 4 (BMP4), dickkopf-1 (DKK1), and transcription factor 7-like 1 (TCF7L1) were down-regulated in old cells. Treatment with recombinant human MICA caused a decrease in cell proliferation and an increase in senescence-associated beta-galactosidase staining. Further analysis of differentially expressed genes may provide insights into the molecular basis of replicative senescence and vascular diseases associated with cellular senescence

    Juvenile Paget's Disease with Paranasal Sinus Aplasia

    Get PDF
    Juvenile Paget's disease (JPD) is a rare skeletal disorder that's characterized by bone demineralization and elevated levels of serum alkaline phosphatase. JPD involves the paranasal sinuses in extremely rare cases. We report here on a 25-month-old Asian male who was diagnosed of JPD associated with aplasia of the paranasal sinuses, but not the ethmoid sinuses. The patient was successfully treated by surgery and we undertook no medical intervention. This appears to be the first reported case of JPD associated with bilateral paranasal sinus aplasia

    Theta Oscillation Related to the Auditory Discrimination Process in Mismatch Negativity: Oddball versus Control Paradigm

    Get PDF
    Background and Purpose The aim of this study was to identify the mechanism underlying the auditory discriminatory process reflected in mismatch negativity (MMN), using time-frequency analysis of single-trial event-related potentials (ERPs).Methods Two auditory tones of different probabilities (oddball paradigm) and the same probability (control paradigm) were used. The average dynamic changes in amplitude were evaluated, and the in-phase consistency of the EEG spectrum at each frequency and time window across trials, event-related spectral perturbations (ERSPs), and inter-trial phase coherence (ITC) were computed.Results Subtraction of the ERPs of standard stimuli from the ERPs of deviant stimuli revealed a clear MMN component in the oddball paradigm. However, no discernible MMN component was observed in the control paradigm. Statistical tests showed that in the oddball paradigm, deviant tones produced significant increases of theta ERSPs and ITC at around 250 ms as compared with the standard tone, while no significant difference between the two stimuli was observed in the control paradigm.Conclusions Our results confirm that the auditory discriminatory process reflected in MMN is accompanied by phase resetting and power modulation at the theta frequency.OAIID:oai:osos.snu.ac.kr:snu2012-01/102/2014017262/2SEQ:2PERF_CD:SNU2012-01EVAL_ITEM_CD:102USER_ID:2014017262ADJUST_YN:YEMP_ID:A079623DEPT_CD:801CITE_RATE:1.892DEPT_NM:의학과SCOPUS_YN:YCONFIRM:

    Identification of ultraviolet B-sensitive genes in human peripheral blood cells

    Get PDF
    Ultraviolet B (UVB) is a serious irritant for the skin and increases a risk for skin cancer. To identify UVB-sensitive genes in peripheral blood, 11 healthy male volunteers were exposed to 0.3 J/cm2 of narrow-band (NB)-UVB, about half of minimal erythema dose (MED) in Japanese, and gene expression in blood was analyzed at 4 h, 24 h, 4 d and 7 d after the irradiation using microarray carrying oligonucleotide probes for 2,000 stressresponsive genes. RNA prepared before the irradiation was used as a reference control. Microarray analysis identified 21 genes as UVB-responsive genes with a peak at 24 h in 6 subjects, and real-time PCR validated the significant down-regulation of 9 (ABCB10, ATF1, ABCD3, TANK, FAS, SLC30A9, CHUK, CASP1, and ABCE1) out of the 21 genes in 11 subjects. Considering sensitive and characteristic features of 9 marker genes, they may be useful indicators for monitoring systemic response to UVB irradiation

    MMP-Inhibitory Effects of Flavonoid Glycosides from Edible Medicinal Halophyte Limonium tetragonum

    Get PDF
    Limonium tetragonum has been well-known for its antioxidative properties as a halophyte. This study investigated the antimetastasis effect of solvent-partitioned L. tetragonum extracts (LTEs) and isolated compounds on HT1080 mouse melanoma cell model with a focus on matrix metalloproteinase (MMP) activity and TIMP and MAPK pathways. Upregulation and stimulation of MMPs result in elevated degradation of extracellular matrix which is part of several complications such as metastasis, cirrhosis, and arthritis. The anti-MMP capacity of LTEs was confirmed by their MMP-inhibitory effects, regulation of MMP and TIMP expression, and suppression of MAPK pathway. Among all tested LTEs, 85% aq. MeOH and n-BuOH were found to be most active fractions which later yielded two known flavonoid glycosides, myricetin 3-galactoside and quercetin 3-o-beta-galactopyranoside. Anti-MMP potential of the compounds was confirmed by their ability to regulate MMP expression through inhibited MAPK pathway activation. These results suggested that L. tetragonum might serve as a potential source of bioactive substances with effective anti-MMP properties
    corecore