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Abstract

Cellular senescence is regulated by specific genes in many organisms. The identification and functional analysis of senescence-associ-
ated genes could provide valuable insights into the senescence process. Here, we employed a new and improved differential display
reverse transcription-polymerase chain reaction (DDRT-PCR) method that involves annealing control primers (ACPs) to identify genes
that are differentially expressed in human umbilical endothelial cells during replicative senescence. Using 120 ACPs, we identified 31 dif-
ferentially expressed genes (DEGs). Basic local alignment search tool (BLAST) search revealed 29 known genes and two unknown genes.
Expression levels of the 29 known genes were confirmed by real-time quantitative RT-RCR and by Western blotting for eight of these
genes. CD9 antigen, MHC class I chain-related sequence A (MICA) and cell division cycle 37 homolog (CDC37) were up-regulated, and
bone morphogenetic protein 4 (BMP4), dickkopf-1 (DKK1), and transcription factor 7-like 1 (TCF7L1) were down-regulated in old
cells. Treatment with recombinant human MICA caused a decrease in cell proliferation and an increase in senescence-associated b-galac-
tosidase staining. Further analysis of differentially expressed genes may provide insights into the molecular basis of replicative senescence
and vascular diseases associated with cellular senescence.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Replicative senescence is the limited capacity of somatic
cells to divide when cultured in vitro and is commonly stud-
ied as a model of biological aging (Hayflick and Moorhead,
1961). The phenotype of replicative senescence in human
diploid fibroblasts (HDFs) is characterized by irreversible
growth arrest in the transition from phase G1 to phase S
of the cell cycle (Chen et al., 2000), larger and flattened cell

morphology (Wagner et al., 2001a), expression of senes-
cence-associated b-galactosidase (SA-b-gal) (Dimri et al.,
1995), short telomeres (Deng et al., 2003; Harley et al.,
1990), and altered gene expression (Cristofalo et al.,
1998). Senescence occurs in a variety of cell types besides
fibroblasts, including glial cells (Huang et al., 2006), kerat-
inocytes (Kang et al., 2005), endothelial cells (Eman et al.,
2006; Mueller et al., 1980), and is commonly accompanied
by a specific set of changes in cell morphology, gene expres-
sion, and function. Using endothelial cells derived from
human umbilical vein (HUVECs), in vitro senescence mod-
els have been described (Garfinkel et al., 1994; Wagner
et al., 2001b) that might contribute to in vivo vascular cell
aging and may thereby reveal pathomechanisms relevant
to senescence-associated disorders of the human vascula-
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ture. Replicative senescence is associated with up- and
down-regulation of a variety of genes involved in inflam-
mation, cell cycle regulation, cytoskeleton, etc. (Yoon
et al., 2004). Novel genes identified during cellular senes-
cence have been analyzed by serial analysis of gene expres-
sion (SAGE) (Untergasser et al., 2002), differential display
PCR (DD-PCR) (Linskens et al., 1995), and cDNA micro-
array technology (Yoon et al., 2004). Recently, an
improved method to identify differentially expressed genes
(DEGs) was developed that uses annealing control primers
(ACPs) (Hwang et al., 2003; Kim et al., 2004).

In this study, to explore novel senescence-associated
genes and to investigate their role in cellular senescence,
we cultured HUVECs until they reached replicative senes-
cence. We then identified DEGs associated with replicative
senescence using ACPs. The expression levels of DEGs
were validated by quantitative real-time RT-PCR and Wes-
tern blot analysis. The possible roles for these genes in rep-
licative senescence are discussed.

2. Materials and methods

2.1. Materials

HUVECs from three different donors and endothelial
cell basal media supplemented with EGM singlequots were
purchased from Cambrex BioScience, Inc. (Walkersville,
MD). The AccuPrep gel purification kit and sequence-spe-
cific primers for senescence-associated genes (Table 1) were
from Bioneer, Inc. (Daejeon, South Korea). The TOPO TA
cloning kit was from Invitrogen, Inc. (Frederick, MD). The
AccuPrep Plasmid Extraction kit was from Takara Bio-
medical, Inc. (Shiga, Japan). The LightCycler FastStart
DNA Master SYBR Green I kit and LightCycler capillar-
ies were from Roche, Inc. (Indianapolis, IN). Mouse
monoclonal anti-BMP4 and anti-CDC37 antibodies and
rabbit polyclonal anti-CD9 and anti-DKK1 antibodies
were from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). A rabbit polyclonal anti-TCF7L1 antibody and a
mouse monoclonal anti-COTL1 antibody were from
Abnova Corp. (Taipei, Taiwan). A goat polyclonal anti-
MICA antibody and a mouse monoclonal anti-FZD4 anti-
body were from R&D Systems, Inc. (Minneapolis, MN).
Horseradish peroxidase-conjugated anti-mouse and anti-
rabbit antibodies were purchased from Bio-Rad Laborato-
ries, Inc. (Philadelphia, PA); anti-goat antibody was from
Sigma–Aldrich, Inc. (St. Louis, MO). Recombinant human
MHC class I polypeptide-related sequence A/Fc (MICA/
Fc) chimera and control human IgG1 Fc protein (Fc) were
from R&D Systems, Inc. (Minneapolis, MN).

2.2. Cell culture and induction of senescence

HUVECs were cultured in endothelial cell basal medium
supplemented with EGM singlequots and 10% FBS. Cells
were harvested, propagated by trypsinization, and replated
at 2 � 105 cells in 100-mm culture plates. When the subcul-

tures reached 80–90% confluence, serial passaging was done
by trypsinization. Population doublings (PD) were esti-
mated using the following equation: PD = (log10 F

� log10 I)/log10 2 (where F = number of cells at the end of
one passage and I = number of cells at the beginning of
one passage). After roughly 46 population doublings, cells
reached growth arrest. For the experiments, cells were used
in either passage 6 (PD < 16) or passage 15 (PD>52). These
are referred to as ‘young’ and ‘old’ cells, respectively.

2.3. Senescence-associated b-galactosidase (SA-b-gal)

staining

Senescent status was verified by in situ staining for SA-b-
gal as previously described (Dimri et al., 1995). The per-
centage of blue cells per 400 cells observed under a light
microscope was calculated.

2.4. Flow cytometry and cell cycle analysis

Cells were harvested, washed twice with PBS, and fixed
with 70% ethanol at�20 �C for 1 h. After washing cells with
PBS containing 2% FBS and 0.01% CaCl2, RNase (1% w/v),
and propidium iodide (50 lg/ml) were added and incubated
at 37 �C for 30 min. The intracellular propidium iodide
fluorescence intensity of 10,000 cells minimum was mea-
sured in each sample using a Becton–Dickinson FACS Cal-
iber flow cytometer, and the cell cycle was analyzed by Cell
Quest software (Becton–Dickinson, Inc., San Jose, CA).

2.5. Total RNA extraction and analysis of DEGs using
ACPs

Total RNA was extracted from cells using TRI reagent
(Molecular Research Center, Inc., Cincinnati, OH) accord-
ing to the manufacturer’s suggestion. Total RNAs from
young and old cells were entrusted to Seegene, Inc. (Seoul,
South Korea) to identify DEGs by modified DDRT-PCR
using ACPs (GeneFishingTM technology).

2.6. Cloning and sequencing of DEGs

Differentially expressed DNA fragments were separated
in agarose gels, extracted from the agarose gels, and cloned
using the TOPO TA cloning kit (Invitrogen, Inc., Freder-
ick, MD). Following transformation of plasmids contain-
ing DEGs into Escherichia coli, plasmid DNAs were
purified using the AccuPrep plasmid extraction kit.
Sequences of DEGs were confirmed by dideoxy sequencing
in Macrogen Co. (Seoul, South Korea). Identified DEGs
were confirmed by BLAST or BLAT (BLAST-like align-
ment tool) searches (http://genome.ucsc.edu).

2.7. Real-time quantitative PCR

To confirm the DEGs identified from ACPs, real-time
quantitative PCR was performed using a LightCycler 1.5
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Table 1
Sequence-specific primers for real-time quantitative PCR of DEGs

DEG No. Gene name Primer sequencea Length (bp)

1 CD9 antigen (CD9) F CATCTGCCCCAAGAAGGA 172
R GCGGATAGCACAGCACAA

2 Dickkopf-1 (DKK1) F ACCCAGGCTCTGCAGTCA 182
R CCTGCAGGCGAGACAGAT

3 Trafficking protein particle complex 4 (TRAPPC4) F GGGAAGCTCAGGCATTGA 248
R CCTTCTCTGCCACCTCCA

4 Bone morphogenetic protein 4 (BMP4) F CATGCGGGATCTTTACCG 200
R CATGCGGGATCTTTACCG

5 MHC class I polypeptide-related sequence A (MICA) F AACACCCAGTTGGGACGA 235
R TTGCAGCCTCCAACAACA

10 FERM domain containing 4A (FRMD4A) F GGGAAGGGGAGGTTGAGA 292
R CCTTTACCGTGGCATTGG

11 S100 calcium binding protein A6 (calcyclin) (S100A6) F GGGTAAACCGCGAATGTG 255
R GTGGAAGATGGCCACGAG

13 Polymerase, d2, regulatory subunit 50 kDa (POLD4) F CGTCTCCCGGGTTATCCT 299
R CAATGGTGGCCTGGTAGG

14 Hypothetical protein LOC550643 (HPL550643) F TCCATTTCCCTGGTGCAT 271
R TGCTGCAGGACCATCTCA

16 Utrophin (UTRN) F GTGCTGCCCTGCAAAACT 289
R ACCTGGAGGTTGGCATCA

17 Coactosin-like 1 (Dictyostelium) (COTL1) F CATCACGTGGATCGGTGA 289
R TGGGCTGGTGGGCTAGTA

18 Microtubule associated serine/threonine kinase 2 (MAST2) F GGGCTATGGGAAGCCAGT 290
R TCTGGCGGAGAAGTCCTG

19 Chromosome 18 open reading frame 4 (C18orf4) F TACTCCGAGGCTGGTTGC 279
R ACGTCCAGCTTCCACTGC

20 Metallothionein 1E (MT1E) F CCCTTTGCTCGAAATGGA 300
R GGGTTTGTGTCCCACGAG

24 Zinc finger protein 292 (ZNF292) F GAGAGCAGGCCTTCACCA 226
R TCTTCGTCCGCCATCTTC

25 Chaperonin containing TCP1, subunit 3c (CCT3) F AGAACCCTCGCATTGTGC 245
R GACTCTGCGGATGGCTGT

26 Homo sapiens, clone IMAGE:4414697 F CCAAGACCTTCCGCTGAC 234
R GCCTGCAGTCCCAGCTAA

28 Frizzled homolog 4 (Drosophila) (FZD4) F GCCAGAACCTCGGCTACA 234
R CGGGTTCACAGCGTCTCT

31 Ornithine decarboxylase 1 (ODC1) F CCTTCGTGCAGGCAATCT 297
R CGTCATCAGAGCCCGTCT

32 PCTAIRE protein kinase 1 (PCTK1) F CCTCGGATGAGGTGCAGT 260
R GGTACCCTCGCCCAGTTT

33-1 Glycyl-tRNA synthetase (GARS) F CTTCGGCCTGGGTAGGAT 232
R TCCGATTGACCCAGAGGA

33-2 N-sulfoglucosamine sulfohydrolase (SGSH) F GGTCCCACCGACACTCAC 201
R GCCCAGAAACACCACAGG

33-3 Bone marrow stromal cell antigen 2 (BST2) F GAGTGCCCATGGAAGACG 279
R CCAGGGAAGCCATTAGGG

34 Transcription factor 7-like 1 (TCF7L1) F GGAGATGAGGGCCAAGGT 258
R TCTGCCTCCTGGACTTGC

37 Glioma tumor suppressor Candidate region gene 2 (GLTSCR2) F AAAGCGATGCCGATTCTG 241
R TCCTTGGAGCCAGTGTCC

(continued on next page)
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(Roche Diagnostics, Almere, The Netherlands) according
to the manufacturer’s suggestion. Synthesis of double-
stranded DNA during various PCR cycles was monitored
using SYBR Green I (Roche Applied Science, Indianapo-
lis, IN).

2.8. Cell treatment with recombinant human MHC class I

polypeptide-related sequence A (MICA/Fc) or Fc protein

Young HUVECs were seeded in 60-mm dishes (2 � 105

cells) or 96-well plates (1000 cells/well) and incubated for
24 h in EGM-2 medium. Cells were treated with MICA/
Fc or Fc (200 or 400 ng/ml) for 4 days. Cell proliferation
was measured by MTT assay and cellular senescence was
analyzed by SA-b-gal staining.

2.9. Western blot analysis

Proteins (30 lg) were separated on 10% or 12% SDS–
polyacrylamide gels and transferred to nitrocellulose mem-
branes. The membranes were soaked in 5% non-fat skim
milk in TTBS (10 mM Tris–HCl, pH 7.5, 150 mM NaCl,
and 0.05% Tween 20) for 30 min at room temperature.
Primary antibodies against CD9, DKK1, BMP4, MICA,
CDC37, TCF7L1, FZD4, and COTL1 were applied over-
night at 4 �C, the membranes were washed three times
with TTBS and then HRP-conjugated secondary antibod-
ies were applied for 2 h. After washing three times with
TTBS for 30 min, antigen–antibody complex was detected
using the enhanced chemiluminescence detection system
(Neuronex, Inc., Pohang, South Korea). A rabbit poly-
clonal antibody against glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used as a protein-loading
control.

2.10. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrasodium bromide) assay

Cells were seeded on 96-well plates at a density of
1 � 103 cells/well. After treatment with MICA/Fc or Fc
(200 or 400 ng/ml) for 4 days, cells were incubated with
1 mg/ml MTT solution for 2 h. The medium was aspirated,
and the formazan product was dissolved with 100 ll
dimethyl sulfoxide. Cell proliferation was assessed by mea-

suring absorbance at 570 nm with a Bio-Rad microplate
reader.

3. Results

3.1. Characterization of replicative senescence in HUVECs

HUVECs were serially passaged until cell proliferation
ceased. At 50 ± 3 population doublings, cells displayed
large and flattened morphology compared to young cells
(Fig. 1A). The percentage of blue cells, indicating SA-b-
gal activity, was higher in senescent cells (86%) than in
young cells (8%) (Fig. 1A and B). The PD time was also
increased in senescent cells (Fig. 1C). To investigate the cell
cycle status of senescent HUVECs, cells were stained with
propidium iodide and analyzed by flow cytometry. While
cell populations in S and G2/M phase were decreased in
senescent cells compared to young cells, populations in
G1/G0 phase were increased in senescent HUVECs
(Fig. 1D). Since the levels of a variety of senescence-associ-
ated proteins such as FOXO3a (Kyoung Kim et al., 2005),
pFOXO3a (Hu et al., 2005), p53 (Rosso et al., 2006), and
p21 (Jackson and Pereira-Smith, 2006) were reported in
cells entering replicative senescence, the levels of these pro-
teins were measured by Western blotting. As expected, the
FOXO3a protein level was decreased in old cells and the
protein levels of pFOXO3a, p53, and p21 were increased
(Fig. 1E).

3.2. Identification of DEGs during replicative senescence of

HUVECs

To explore DEGs during replicative senescence, RNAs
extracted from young and senescent cells were subjected
to RT-PCR using a combination of 120 arbitrary primers
and two anchored oligo(dT) primers (dT-ACP1 and dT-
ACP2). Among the 400 amplicons analyzed, 53 differen-
tially expressed DNA bands were identified between young
and old cells (Fig. 2). Among these 53 DNA bands, 31
DNA bands were purified from agarose gels and cloned
into TOPO TA-cloning vectors. The clones were
sequenced, and the sequence similarities and characteriza-
tion of these DEGs are summarized in Table 2.

Table 1 (continued)

DEG No. Gene name Primer sequencea Length (bp)

38 Hypothetical protein MGC49942 (HPM49942) F TGGCCGACTCTTCTCCTG 218
R CACCTTCTTGGGCCCTTT

47 Denticleless homolog (Drosophila) (RAMP) F AACTGGGTGACCCGAACA 274
R TACCAGCAAGGCAGCACA

48 50,30-nucleotidase, cytosolic (NT5C) F GTGCGGGAGATGAACGAC 251
R TGGCAGCAGGTGAACAAG

53 Cell division cycle 37 homolog (S. cerevisiae) (CDC37) F GCTTCCGGCAGTTCTTCA 283
R GTGGGGTCCATCTTGCTG

a F, forward primer; R, reverse primer.
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3.3. Validation of DEGs by real-time quantitative RT-PCR

To further determine the specific expression patterns of
identified DEGs, 19 up-regulated genes and 10 down-regu-
lated genes were selected and analyzed by fluorescence-
monitored real-time RT-PCR. Real-time PCR showed that
the expression levels of CD9 antigen (CD9), MHC class I
polypeptide-related sequence A (MICA), frizzled homolog
4 (FZD4), coactosin-like 1 (COTL1), bone morphogenetic

protein 4 (BMP4), zinc finger protein 292, transcription
factor 7-like 1 (TCF7L1), and hypothetical protein
MGC49942 were consistent with the initial expression pat-
terns of DEGs (Table 2).

3.4. Protein expression analysis of selected candidate genes

To further evaluate the levels of several DEGs, whole
cell lysates from both young and old cells were prepared

Primer No.

1000-

500-

bp
OM Y O Y O Y O Y O Y O Y O Y

1 2 3 4 5 6 7

Fig. 2. Typical agarose gel electropherogram for PCR products amplified using ACPs between young (Y) and old (O) HUVECs. The amplified DNA
products were separated on 1% agarose gels containing ethidium bromide. Arrowheads indicate the DEGs that show differential expression in young and
old cells.
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Fig. 1. Characterization of replicative senescence in HUVECs. (A) Morphological changes and SA-b-gal staining in young and old cells. (B) Percentages
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in young and old cells. (E) Western blot analysis of FOXO3a, pFOXO3a, p53, and p21 in young and old cells. Values are means ± SD from three
independent experiments. Representative data from three independent experiments are shown.
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and the expression levels of candidate genes for which spe-
cific antibodies were available were analyzed by Western
blotting. DKK1, BMP4, and TCF7L1 expression levels
were decreased in old cells, and CD9, CDC37, and MICA
protein levels were increased in senescent cells; these results
were consistent with the DEG analysis and real-time PCR
(Fig. 3). Although the FZD4 and COTL1 mRNA levels

were increased in old cells, their protein levels were
unchanged (Fig. 3).

3.5. Effect of MICA on cellular senescence in young

HUVECs

To address whether up-regulation of MICA contribute
to cellular senescence in HUVECs, we treated cells with
MICA/Fc or control Fc protein and measured cell prolifer-
ation by MTT assay and SA-b-gal activity. Treatment with
MICA/Fc caused a decrease in cell proliferation (Fig. 4A)
and an increase in SA-b-gal staining (Fig. 4B). These
results suggest that MICA might play an important role
in the regulation of cellular senescence in HUVECs.

4. Discussion

A modified system of DDRT-PCR using ACP was used
to detect genes that are differentially expressed during rep-
licative senescence of HUVECs. ACP comprises a tripartite
structure with a polydeoxyinosine linker between the 30-end
target core sequence and the 50-end non-target universal
sequence, which improves the specificity of PCR amplifica-
tion and is therefore useful for the identification of differen-
tially expressed genes (Hwang et al., 2003). From analysis
of the expression levels of mRNA fragments, we found
53 DNA bands that were differentially expressed during
replicative senescence of HUVECs. Among these 53 DEGs,
31 DEGs were selected and their expression patterns were
confirmed by real-time RT-PCR. Real-time RT-PCR
results showed that the expression levels of 4 of 19 (21%)
up-regulated genes and 6 of 10 (60%) down-regulated genes
were consistent with DEG analysis, which suggests that the
DEG data require validation. We found that the protein
levels of CD9, MICA, and CDC37 were up-regulated while
the levels of DKK1, BMP4, and TCF7L1 protein were
down-regulated in old cells. cDNA array technology
(Hampel et al., 2006), subtractive hybridization (Grillari

Table 2
Identification of DEGs associated with replicative senescence in HUVECs and validation of DEGs by real-time quantitative PCR

DEG No. Gene name DEG levelsa Real-time PCR (folds) b Accession No. Function

1 CD9 antigen " 2.257 NM_130850 Cell adhesion
2 Dickkopf-1 " NC NM_012242 Development
5 MHC class I polypeptide-related sequence A " 2.028 NM_000247 Cellular defense

17 Coactosin-like 1 (Dictyostelium) " 1.804 NM_021149 Cytoskeleton
28 Frizzled homolog 4 (Drosophila) " 4.290 NM_012193 Wnt signaling

4 Bone morphogenetic protein 4 ; 0.162 NM_130850 Differentiation
16 Utrophin ; 1.585 NM_007124 Cytoskeleton
24 Zinc finger protein 292 ; 0.331 XM_048070 Transcription
32 PCTAIRE protein kinase 1 ; 0.635 NM_006201 Cell cycle regulation
34 Transcription factor 7-like 1 ; 0.251 NM_031283 Transcription (Wnt signaling)
35 Biglycan ; 0.298 NM_001711 Extracellular matrix
38 Hypothetical protein MGC49942 ; 0.478 NM_174893 Unknown
53 Cell division cycle 37 homolog (S. cerevisiae) ; 1.907 NM_007065 Protein folding

a ", up-regulated in old cells; ;, down-regulated in old cells.
b Values are means of three independent experiments; NC, not clear.

GAPDH

BMP4

Young Old

CDC37

TCF7L1

MICA

FZD4

COTL1

DKK-1

CD9

Fig. 3. Western blot analysis of DEGs in young and old HUVECs.
Proteins were extracted from young and old cells and separated on SDS–
polyacrylamide gels. The protein levels of CD9, CDC37, MICA, BMP4,
DKK1, TCF7L1, FZD4, and COTL1 in young and old HUVECs were
analyzed by Western blotting. Equal protein loading was estimated by
using a GAPDH antibody. Representative data from three independent
experiments are shown.
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et al., 2000), and proteomic analysis (Bruneel et al., 2003)
have been used to identify senescence-associated genes in
HUVECs. In those experiments, up- and down-regulation
were observed for a variety of genes, including insulin-like
growth factor binding protein-3, insulin-like growth factor
binding protein-5, interleukin-8, vascular endothelial
growth inhibitor, TGF-b-inducible gene H3, p53-inducible
gene (PIG3, a protein involved in vesicular transport), and
ribosomal protein L28. DKK1 was reported to be up-reg-
ulated in senescent human dermal fibroblasts (Yoon
et al., 2004). However, CD9, CDC37, MICA, BMP4, and
TCF7L1 were not reported as differentially expressed in
replicative senescence of HUVECs in other experiments.
Therefore, this modified DDRT-PCR using ACPs might
be a very good method for identifying novel DEGs.

CD9 antigen is a member of the transmembrane 4 (tet-
raspanin) superfamily that is known to complex with inte-
grins and other transmembrane 4 superfamily proteins
(Lanza et al., 1991). It can modulate cell adhesion and
migration and also trigger platelet activation and aggrega-
tion (Lanza et al., 1991; Masellis-Smith and Shaw, 1994).
CD9-deficient mice revealed only infertility of females
due to a defect in the sperm–egg fusion process (Le Naour
et al., 2000; Miyado et al., 2000). CD9 participates in endo-
thelial cell migration during in vitro wound repair (Klein-
Soyer et al., 2000), and monoclonal antibody against
CD9 is reported to inhibit platelet-induced human endo-
thelial cell proliferation (Ko et al., 2006), suggesting that
CD9 plays an important role in endothelial regeneration.
Although there were no reports of CD9 association with
replicative senescence in endothelial cells, our finding that
CD9 mRNA and protein levels were increased in old cells

suggests that CD9 may play a role in cellular senescence
of HUVECs.

Cell division cycle 37 (CDC37) was originally identified
in yeast as a cell cycle mutant that gives a G1 arrest pheno-
type (Reed, 1980). CDC37 is bound to cyclin-dependent
kinase-4 (CDK4) (Dai et al., 1996) and activates progres-
sion through G1 phase of the mammalian cell cycle by sta-
bilizing CDK4 (Stepanova et al., 1996). As a key heat
shock protein 90 (Hsp90) co-chaperone (Roe et al.,
2004), CDC37 functions as a scaffold and facilitates bind-
ing of a variety of protein kinases to Hsp90, including
Raf-1, Src family kinases, IKKs, and Akt/PKB (Pearl,
2005). Akt has been identified as one of the protein kinases
associated with Hsp90 and CDC37 in a complex in which
Akt is stabilized and regulated by phosphatidylinositol 3-
kinase (Basso et al., 2002). In general, Akt activation has
been reported to promote proliferation and survival of
mammalian cells (Liang and Slingerland, 2003). However,
Akt activity increased along with cellular senescence and
Akt activation accelerated cellular senescence in primary
human endothelial cells via the inactivation of FOXO3a
and the p53/p21-dependent pathway (Miyauchi et al.,
2004). Since cells in replicative senescence showed G1
arrest in the cell cycle, CDC37 might participate in replica-
tive senescence of HUVECs by deregulating the cell cycle
via CDK4 or Akt activation.

Major histocompatibility class I-related chain A
(MICA) is a transmembrane glycoprotein that is found in
many cell lines such as endothelial cells and fibroblasts
(Zwirner et al., 1998). In fibroblasts and endothelial cells,
MICA is induced upon heat shock and oxidative stress,
and is also up-regulated in various tumors (Vivier et al.,
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2002). Stress-inducible MICA enhances the function of NK
and T cells by binding the stimulating receptor NKG2D
(Bauer et al., 1999), and the activation of NKG2D receptor
appears to play an important role in host defense against
tumor formation (Smyth et al., 2005). Endothelial cells
play important roles in inflammation and immune
responses by regulating the expression levels in chemo-
kines, adhesion molecules, and major histocompatibility
complex II molecules as well as by modulating functions
of natural killer cells and T cells (Methe et al., 2007).
Therefore, the finding that treatment with recombinant
MICA caused an increase in SA-b-gal staining suggests
that MICA may play a role in endothelial cell senescence
and contribute to immunological functions of endothelial
cells.

In the present study, we showed that the levels of BMP4
RNA and protein decreased in senescent cells. Bone mor-
phogenetic proteins (BMPs) belong to the transforming
growth factor-b (TGF-b) superfamily (Massague et al.,
2000). BMP4 inhibits aortic and pulmonary vascular
smooth muscle cell proliferation (Ma et al., 2001). There
is also evidence that TGF family members can stimulate
cell proliferation (Ohga et al., 1996). BMP4 phosphorylates
p38 MAPK, ERK1/2, JNK, and Smad1 (Jeffery et al.,
2005), and also activates NADPH oxidase, which leads to
ROS production, NF-kB activation, intercellular adhesion
molecule 1 expression, and subsequent increase the mono-
cyte adhesivity of endothelial cells (Jo et al., 2006). BMP4
functions as a novel mediator of endothelial dysfunction
and hypertension (Miriyala et al., 2006). To our knowl-
edge, there were no reports of a role for BMP4 in cellular
senescence of HUVECs. Hence, it is important to elucidate
the relationship between BMP4 and replicative senescence
in HUVECs.

TCF7L1 (transcription factor 7-like 1) is a member of
the T cell factor/lymphoid enhancer factor (Tcf/Lef) family
of transcription factors, which contain the high mobility
group (HMG)-box DNA binding domain (Castrop et al.,
1992). Tcf/Lef family transcription factors are the down-
stream effectors of the Wnt signal transduction pathway
and are activated by b-catenin to stimulate transcription
of a variety of target genes (Esufali and Bapat, 2004). A
variety of Wnt receptors and transcriptional effectors are
expressed in primary human endothelial cells, and the acti-
vation of Wnt/b-catenin signaling promotes the prolifera-
tion of endothelial cells as well as angiogenesis
(Masckauchan et al., 2005). Wnt/b-catenin is also reported
to communicate with p53 tumor suppressor (Harris and
Levine, 2005), a common major effecter of cellular senes-
cence in normal somatic cells (Ferbeyre et al., 2002).
TCF7L1 levels were strongly increased in invading tropho-
blasts, and Wnt3A also stimulated trophoblast migration
and invasion via TCF7L1 activation (Pollheimer et al.,
2006). Wnt/b-catenin/TCF signaling plays a major role in
the regulation of VSMC proliferation in response to
growth factor stimulation by regulating the cell cycle genes
cyclin D1 and p21 (Quasnichka et al., 2006). DKK1 (dick-

kopf-1) is a secreted protein with two cysteine-rich regions
and is involved in embryonic development through its inhi-
bition of the Wnt signaling pathway (Niehrs, 2006). Our
finding that the expression levels of TCF7L1 and DKK1
are decreased in senescent HUVECs suggests the possibility
that TCF7L1 and DKK1 contribute to replicative senes-
cence by regulating cell proliferation via the Wnt signaling
pathway.

In conclusion, our results demonstrate that gene expres-
sion is obviously changed in HUVECs during replicative
senescence. Classification of the identified genes indicates
that a comprehensive range of biological processes are
involved in cellular aging. Further studies are needed to
investigate the biological functions of these DEGs in repli-
cative senescence of HUVECs, as well as in vascular dis-
eases associated with senescence.
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