91 research outputs found

    100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin

    Get PDF
    Anabaena Sensory Rhodopsin (ASR) stands out among the microbial retinal proteins in that, under light-adaptation (LA) conditions, it binds both the 13-cis isomer and the all-trans isomer of the protonated Schiff base of retinal (PSBR). In the dark-adapted (DA) state, more than 95% of the proteins bear all-trans PSBR, and the protein environment adopts a different equilibrium state. We report the excited state and photo-isomerization kinetics of ASR under different LA conditions. The full data set allows confirming that the photoisomerization of the 13C isomer occurs within 100 fs and indications of an excited and ground state wavepacket launched by the ultrafast non-adiabatic reaction are reported. Even though this recalls the record isomerization time and the coherent reaction scenario of 11-cis PSBR in rhodopsin, the photoisomerization quantum yield (QY) is much lower, actually the lowest value ever reported for retinal proteins (<15%). Noticeably, in ASR the excited state lifetime (ESL) is at least five times larger and the QY is more than twice as large for AT PSBR as compared to 13C PSBR. We argue that ESL and QY cannot be expected to be correlated at all, but that the latter is decided on, as often anticipated, by the wavepacket pathways leading to the conical intersection seam

    Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of common solid tumors. Using recently developed MALDI matrices for lipid profiling, we evaluated whether direct tissue MALDI MS analysis on proteins and lipids may classify human breast cancer samples according to the intrinsic subtype.</p> <p>Methods</p> <p>Thirty-four pairs of frozen, resected breast cancer and adjacent normal tissue samples were analyzed using histology-directed, MALDI MS analysis. Sinapinic acid and 2,5-dihydroxybenzoic acid/α-cyano-4-hydroxycinnamic acid were manually deposited on areas of each tissue section enriched in epithelial cells to identify lipid profiles, and mass spectra were acquired using a MALDI-time of flight instrument.</p> <p>Results</p> <p>Protein and lipid profiles distinguish cancer from adjacent normal tissue samples with the median prediction accuracy of 94.1%. Luminal, HER2+, and triple-negative tumors demonstrated different protein and lipid profiles, as evidenced by permutation <it>P </it>values less than 0.01 for 0.632+ bootstrap cross-validated misclassification rates with all classifiers tested. Discriminatory proteins and lipids were useful for classifying tumors according to the intrinsic subtype with median prediction accuracies of 80.0-81.3% in random test sets.</p> <p>Conclusions</p> <p>Protein and lipid profiles accurately distinguish tumor from adjacent normal tissue and classify breast cancers according to the intrinsic subtype.</p

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA&apos;s TEMPO and ESA&apos;s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Proceedings of the 24th Paediatric Rheumatology European Society Congress: Part three

    Get PDF
    From Springer Nature via Jisc Publications Router.Publication status: PublishedHistory: collection 2017-09, epub 2017-09-0

    Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

    No full text
    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type

    Light-Driven Na<sup>+</sup> Pump from <i>Gillisia limnaea</i>: A High-Affinity Na<sup>+</sup> Binding Site Is Formed Transiently in the Photocycle

    No full text
    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from <i>Krokinobacter</i>. In this paper, we examine a similar protein, GLR from <i>Gillisia limnaea</i>, expressed in <i>Escherichia coli</i>, which shares some properties with KR2 but transports only Na<sup>+</sup>. The absorption spectrum of GLR is insensitive to Na<sup>+</sup> at concentrations of ≤3 M. However, very low concentrations of Na<sup>+</sup> cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a “Na<sup>+</sup>-independent” to a “Na<sup>+</sup>-dependent” photocycle (or photocycle branch) at ∼60 μM Na<sup>+</sup>. The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na<sup>+</sup> concentration. This suggests that a high-affinity Na<sup>+</sup> binding site is created transiently after photoexcitation, and entry of Na<sup>+</sup> from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na<sup>+</sup> is needed for switching the reaction path at lower pH. The data suggest therefore competition between H<sup>+</sup> and Na<sup>+</sup> to determine the two alternative pathways. The idea that a Na<sup>+</sup> binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na<sup>+</sup> binds without photoexcitation. Binding of Na<sup>+</sup> to the mutant shifts the chromophore maximum to the red like that of H<sup>+</sup>, which occurs in the photocycle of the wild type
    corecore