30 research outputs found

    Introduction: diverging or converging dynamics? EU and US policies in North Africa - an introduction

    Get PDF
    According to a number of scholars of international relations, the transatlantic relationship is going through a very significant and possibly irreversible crisis. It is claimed that the different reactions of the United States and the European Union to both September 11th and the war in Iraq were the catalyst for a rift that had been deepening for some time, leading to competition between the two actors. The literature on the foreign policy of the US and the EU in the Middle East and North Africa also points to this rift in order to explain the seemingly contradictory policies that the two actors implement in the region, with the US being more forceful in its attempts to export democracy and in supporting Israel while the EU adopts a less confrontational attitude and is perceived to be more friendly to the Palestinians. This article, which introduces a special issue on the nature of US and EU foreign policies in North Africa, argues on the contrary that the transatlantic rift does not really exist. While there are certainly differences in discourse and policies, both the EU and the US share the same concerns and have similar strategic objectives in the region, leading the two actors towards cooperation and division of labour rather than confrontation

    Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins

    Get PDF
    The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA−/E−/H− and racE− mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics

    FGF2 Translationally Induced by Hypoxia Is Involved in Negative and Positive Feedback Loops with HIF-1α

    Get PDF
    BACKGROUND: Fibroblast growth factor 2 (FGF2) is a major angiogenic factor involved in angiogenesis and arteriogenesis, however the regulation of its expression during these processes is poorly documented. FGF2 mRNA contains an internal ribosome entry site (IRES), a translational regulator expected to allow mRNA expression during cellular stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have developed a skin ischemia model in transgenic mice expressing a reporter transgene under the control of the FGF2 IRES. The results reveal that FGF2 is induced at the protein level during ischemia, concomitant with HIF-1alpha induction and a decrease in FGF2 mRNA. In addition, the FGF2 IRES is strongly activated under these ischemic conditions associated with hypoxia, whereas cap-dependent translation is repressed by 4E-BP hypophosphorylation. We also show that up-regulation of FGF2 protein expression in response to hypoxia correlates with the increase of FGF2 IRES activity in vitro, in human retinoblasts 911. The use of siRNAs targeting HIF or FGF2 indicates that FGF2 and HIF-1alpha reciprocally regulate their expression/accumulation, by a negative feedback loop in early hypoxia, followed by a positive feedback loop in late hypoxia. CONCLUSION/SIGNIFICANCE: FGF2 expression is up-regulated in vivo and in vitro in response to hypoxia. Strikingly, this up-regulation is not transcriptional. It seems to occur by an IRES-dependent mechanism, revealing new mechanistic aspects of the hypoxic response. In addition, our data show that FGF2 interacts with HIF-1alpha in a unique crosstalk, with distinct stages in early and late hypoxia. These data reveal the physiological importance of IRES-dependent translation during hypoxic stress and underline the complexity of the cellular response to hypoxia, suggesting a novel role of FGF2 in the regulation of HIF-1alpha during the induction of angiogenesis

    Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Get PDF
    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis

    Exploring the anatomy of negative motor areas (NMAs): Findings in awake surgery

    No full text
    Positive motor responses have been used in neurosurgery for the identification of motor structures. With the term “negative motor responses” (NMRs) a complete inhibition of movement without loss of muscle tone or consciousness is meant. Papers already exist in the literature regarding cortical areas in which such NMRs are evoked, the so-called “negative motor areas” (NMAs), but their location and functional meaning are still poorly understood. This paper discusses the anatomy of the NMAs of the human brain, in light of our brain mapping experience. 21 patients underwent awake surgery and direct electrical stimulation (DES) was performed using bipolar electrodes. Excision was interrupted when functional responses were intraoperatively identified through DES. The labeled mapping sites were recorded by photography prior to and following tumor resection. Results depicting a probabilistic map of negative motor network anatomy were retrospectively analyzed. Our findings strongly support the fact that the precentral gyrus, classical site of the of the Primary Motor Areas, is also strongly involved in generating NMRs. The distribution of NMAs was noted not to be as rigid as previously described, ranging in different brain areas with a somatotopic arrangement. Presented anatomical results are consistent with the literature, but the exact functional meaning of NMAs and their subcortical connectivity is still far from being completely understood

    Noncoupled NADH:Ubiquinone Oxidoreductase of Azotobacter vinelandii Is Required for Diazotrophic Growth at High Oxygen Concentrations

    No full text
    The gene encoding the noncoupled NADH:ubiquinone oxidoreductase (NDH II) from Azotobacter vinelandii was cloned, sequenced, and used to construct an NDH II-deficient mutant strain. Compared to the wild type, this strain showed a marked decrease in respiratory activity. It was unable to grow diazotrophically at high aeration, while it was fully capable of growth at low aeration or in the presence of NH(4)(+). This result suggests that the role of NDH II is as a vital component of the respiratory protection mechanism of the nitrogenase complex in A. vinelandii. It was also found that the oxidation of NADPH in the A. vinelandii respiratory chain is catalyzed solely by NDH II

    Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES.

    No full text
    International audienceIRESs (internal ribosome entry sites) are RNA elements behaving as translational enhancers in conditions of global translation blockade. IRESs are also useful in biotechnological applications as they allow expression of several genes from a single mRNA. Up to now, most IRES-containing vectors use the IRES from encephalomyocarditis virus (EMCV), highly active in transiently transfected cells but long and not flexible in its positioning relative to the gene of interest. In contrast, several IRESs identified in cellular mRNAs are short and flexible and may therefore be advantageous in gene transfer vectors such as those derived from the adeno-associated virus (AAV), where the size of the transgene expression cassette is limited. Here, we have tested bicistronic AAV-derived vectors expressing two luciferase genes separated by the EMCV- or fibroblast growth factor 1 (FGF-1) IRES. We demonstrate that the AAV vector with the FGF-1 IRES, when administrated into the mouse muscle, leads to efficient expression of both transgenes with a stable stoechiometry, for at least 120 days. Interestingly, the bicistronic mRNA containing the FGF-1 IRES leads to transgene expression 10 times superior to that observed with EMCV, in vivo. AAV vectors featuring the FGF-1 IRES may thus be advantageous for gene therapy approaches in skeletal muscle involving coexpression of genes of interest
    corecore