372 research outputs found

    Dieulafoy's Lesion of Jejunum: Presenting Small Bowel Mass and Stricture

    Get PDF
    Dieulafoy's lesion is an uncommon cause of gastrointestinal bleeding. Hemorrhage occurs through mucosal erosion from an abnormally dilated submucosal artery. Although Dieulafoy's lesion is usually located in the stomach, it may occur anywhere in the gastrointestinal tract. We report here on a case of jejunal Dieulafoy's lesion presenting as a mass and short segment stricture on CT and enteroclysis

    Electron−hole separation in ferroelectric oxides for efficient photovoltaic responses

    Get PDF
    Despite their potential to exceed the theoretical Shockley−Queisser limit, ferroelectric photovoltaics (FPVs) have performed inefficiently due to their extremely low photocurrents. Incorporating Bi₂FeCrO₆(BFCO) as the light absorber in FPVs has recently led to impressively high and record photocurrents [Nechache R, et al. (2015) Nat Photonics 9:61–67], which has revived the FPV field. However, our understanding of this remarkable phenomenon is far from satisfactory. Here, we use first-principles calculations to determine that such excellent performance mainly lies in the efficient separation of electron− hole (e-h) pairs. We show that photoexcited electrons and holes in BFCO are spatially separated on the Fe and Cr sites, respectively. This separation is much more pronounced in disordered BFCO phases, which adequately explains the observed exceptional PV responses. We further establish a design strategy to discover next-generation FPV materials. By exploring 44 additional Bi-based double-perovskite oxides, we suggest five active-layer materials that offer a combination of strong e-h separations and visible-light absorptions for FPV applications. Our work indicates that charge separation is the most important issue to be addressed for FPVs to compete with conventional devices. Keywords: ferroelectrics; double perovskites; photovoltaics; e-h separation; density functional theor

    Antiretroviral Genotypic Resistance Mutations in HIV-1 Infected Korean Patients with Virologic Failure

    Get PDF
    Resistance assays are useful in guiding decisions for patients experiencing virologic failure (VF) during highly-active antiretroviral therapy (HAART). We investigated antiretroviral resistance mutations in 41 Korean human immunodeficiency virus type 1 (HIV-1) infected patients with VF and observed immunologic/virologic response 6 months after HAART regimen change. Mean HAART duration prior to resistance assay was 45.3±27.5 months and commonly prescribed HAART regimens were zidovudine/lamivudine/nelfinavir (22.0%) and zidovudine/lamivudine/efavirenz (19.5%). Forty patients (97.6%) revealed intermediate to high-level resistance to equal or more than 2 antiretroviral drugs among prescribed HAART regimen. M184V/I mutation was observed in 36 patients (87.7%) followed by T215Y/F (41.5%) and M46I/L (34%). Six months after resistance assay and HAART regimen change, median CD4+ T cell count increased from 168 cells/µL (interquartile range [IQR], 62-253) to 276 cells/µL (IQR, 153-381) and log viral load decreased from 4.65 copies/mL (IQR, 4.18-5.00) to 1.91 copies/mL (IQR, 1.10-3.60) (P<0.001 for both values). The number of patients who accomplished viral load <400 copies/mL was 26 (63.4%) at 6 months follow-up. In conclusion, many Korean HIV-1 infected patients with VF are harboring strains with multiple resistance mutations and immunologic/virologic parameters are improved significantly after genotypic resistance assay and HAART regimen change

    Electronic Structure and Band Alignments of Various Phases of Titania Using the Self-Consistent Hybrid Density Functional and DFT+U Methods

    Get PDF
    To understand, and thereby rationally optimize photoactive interfaces, it is of great importance to elucidate the electronic structures and band alignments of these interfaces. For the first-principles investigation of these properties, conventional density functional theory (DFT) requires a solution to mitigate its well-known bandgap underestimation problem. Hybrid functional and Hubbard U correction are computationally efficient methods to overcome this limitation, however, the results are largely dependent on the choice of parameters. In this study, we employed recently developed self-consistent approaches, which enable non-empirical determination of the parameters, to investigate TiO2 interfacial systems—the most prototypical photocatalytic systems. We investigated the structural, electronic, and optical properties of rutile and anatase phases of TiO2. We found that the self-consistent hybrid functional method predicts the most reliable structural and electronic properties that are comparable to the experimental and high-level GW results. Using the validated self-consistent hybrid functional method, we further investigated the band edge positions between rutile and anatase surfaces in a vacuum and electrolyte medium, by coupling it with the Poisson-Boltzmann theory. This suggests the possibility of a transition from the straddling-type to the staggered-type band alignment between rutile and anatase phases in the electrolyte medium, manifested by the formation of a Stern-like layer at the interfaces. Our study not only confirms the efficacy of the self-consistent hybrid functional method by reliably predicting the electronic structure of photoactive interfaces, but also elucidates a potentially dramatic change in the band edge positions of TiO2 in aqueous electrolyte medium which can extensively affect its photophysical properties

    Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated.</p> <p>Results</p> <p>Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1.</p> <p>Conclusions</p> <p>Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of stress signaling in rice roots. Enzymes involved in glycolysis, branched amino acid catabolism, dnaK-type molecular chaperone, calcium binding protein, Sal T and glyoxalase are potential targets of OSRK1 in rice roots under salt stress that need to be further investigated.</p

    HIV-Specific Cellular Immune Responses Are Stimulated by Structured Treatment Interruption in Chronically HIV-1 Infected Koreans

    Get PDF
    We evaluated the enhancing effect of structured treatment interruptions (STIs) on HIV-specific immunity in chronically HIV-1 infected Korean patients. A prospective case-control study was done with a total of 10 subjects for a period of 26 weeks. Six subjects were on STIs and four subjects were on continuous HAART for comparison. The STI subjects underwent four periods of STIs. For those on STIs, HAART was stopped at week 0 for two weeks, and resumed thereafter for six weeks. Viral load and CD4+/CD8+ T cells were measured by HIV RNA RT-PCR and flow cytometry, and HIV-specific immunity was measured by an ELISPOT assay. HIV-specific cytotoxic T cell immunity was more pronounced in the STI subjects than in the continuous HAART subjects after 26 weeks (p = 0.011). The difference in cytotoxic T cell response in the STI group was more prominent than in the continuous HAART group (p = 0.011). Viral load after 26 weeks was higher in the STI subjects than in the continuous HAART subjects (p = 0.008). An HIV-specific cellular immune response can be stimulated by STIs in chronically HIV-infected Koreans. A larger study is warranted in order to further characterize viral and immunological parameters of treatment with STIs in cases of chronic HIV infection

    Grape seed proanthocyanidin extract inhibits glutamate-induced cell death through inhibition of calcium signals and nitric oxide formation in cultured rat hippocampal neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proanthocyanidin is a polyphenolic bioflavonoid with known antioxidant activity. Some flavonoids have a modulatory effect on [Ca<sup>2+</sup>]<sub>i</sub>. Although proanthocyanidin extract from blueberries reportedly affects Ca<sup>2+ </sup>buffering capacity, there are no reports on the effects of proanthocyanidin on glutamate-induced [Ca<sup>2+</sup>]<sub>i </sub>or cell death. In the present study, the effects of grape seed proanthocyanidin extract (GSPE) on glutamate-induced excitotoxicity was investigated through calcium signals and nitric oxide (NO) in cultured rat hippocampal neurons.</p> <p>Results</p> <p>Pretreatment with GSPE (0.3-10 μg/ml) for 5 min inhibited the [Ca<sup>2+</sup>]<sub>i </sub>increase normally induced by treatment with glutamate (100 μM) for 1 min, in a concentration-dependent manner. Pretreatment with GSPE (6 μg/ml) for 5 min significantly decreased the [Ca<sup>2+</sup>]<sub>i </sub>increase normally induced by two ionotropic glutamate receptor agonists, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). GSPE further decreased AMPA-induced response in the presence of 1 μM nimodipine. However, GSPE did not affect the 50 mM K<sup>+</sup>-induced increase in [Ca<sup>2+</sup>]<sub>i</sub>. GSPE significantly decreased the metabotropic glutamate receptor agonist (<it>RS</it>)-3,5-Dihydroxyphenylglycine-induced increase in [Ca<sup>2+</sup>]<sub>i</sub>, but it did not affect caffeine-induced response. GSPE (0.3-6 μg/ml) significantly inhibited synaptically induced [Ca<sup>2+</sup>]<sub>i </sub>spikes by 0.1 mM [Mg<sup>2+</sup>]<sub>o</sub>. In addition, pretreatment with GSPE (6 μg/ml) for 5 min inhibited 0.1 mM [Mg<sup>2+</sup>]<sub>o</sub>- and glutamate-induced formation of NO. Treatment with GSPE (6 μg/ml) significantly inhibited 0.1 mM [Mg<sup>2+</sup>]<sub>o</sub>- and oxygen glucose deprivation-induced neuronal cell death.</p> <p>Conclusions</p> <p>All these data suggest that GSPE inhibits 0.1 mM [Mg<sup>2+</sup>]<sub>o</sub>- and oxygen glucose deprivation-induced neurotoxicity through inhibition of calcium signals and NO formation in cultured rat hippocampal neurons.</p

    Factors Associated with HIV-1 Proviral DNA Loads in Patients with Undetectable Plasma RNA Load

    Get PDF
    To evaluate factors associated with human immunodeficiency virus type 1 (HIV-1) proviral DNA load, we conducted a cross-sectional study of 36 chronically HIV-1-infected individuals with undetectable plasma viral RNA. We used real-time polymerase chain reaction to determine the number of HIV-1 proviral DNA copies per 106 peripheral blood mononuclear cells. The mean level of plasma viral RNA when the CD4+ T cell count was above 500 cells/µL without highly active antiretroviral therapy (HAART) was significantly associated with proviral DNA load at the time of undetectable plasma HIV RNA with HAART. Strategies to reduce the level of plasma viral RNA when patients' CD4+ T cell counts are above 500 cells/µL without HAART could help reduce HIV-1 proviral DNA load
    corecore