26 research outputs found

    Sea surface temperature cooling induced by Tropical cyclone Hudhud over Bay of Bengal

    Get PDF
    9-17Hudhud was a very severe cyclone storm occurred in October 2014 over Bay of Bengal (BoB). This paper deals with the sea surface temperature (SST) cooling occurred due to Hudhud. When compared the SST difference between before cyclogenesis and landfall, cooling of 3°C observed. Maximum cooling of SST occurred on 11-12 Oct due to strong winds covered and robust convection all over BoB. Buoy data clearly indicating SST cooling and entrainment of subsurface waters to mixed layer. ARGO data also clearly signifying the SST cooling, however the cooling magnitude is lower (-1.25°C) due to difference in profile timing

    Interannual sea level variability in the tropical Pacific Ocean from 1993 to 2006

    Get PDF
    Three net surface heat flux products, namely from 1) version 2 of Common Ocean Reference Experiment (CORE.2), 2) Objectively Analyzed Air-Sea Fluxes (OAFlux), and 3) the European Centre for Medium-Range Weather Forecasts operational ocean analysis/reanalysis system (ECMWF ORA-S3), and three wind stress products, namely from I) CORE.2, 2) Simple Ocean Data Assimilation Reanalysis, version 2.1.6 (SODA 2.1.6), and 3) ECMWF ORA-S3 are used to investigate the abilities of four simple oceanic mechanisms in explaining the interannual variance of altimetry-derived sea surface height (SSH) anomalies in the tropical Pacific Ocean over the period 1993-2006. It is found that local response to surface heating plays an important role in sea level rise along the western equatorial Pacific (150 degrees-180 degrees E). The dominant processes affecting interannual variability of observed SSH anomalies vary regionally in the tropical Pacific; local response to surface heating, local Ekman pumping, wind-induced first baroclinic mode Rossby waves and the eastern boundary forcing are all important. Both the local response to surface heating and the eastern boundary forcing are important in explaining the interannual variance of observed SSH anomalies in the northeastern tropical Pacific; while the dominant contribution to interannual sea level variability in the southeastern tropical Pacific is from the eastern boundary forcing, the local Ekman pumping plays a relatively minor role in the interannual SSH change there. The wind-induced first baroclinic mode Rossby waves dominate interannual SSH variability in the western tropical Pacific, excluding the area of 2 degrees-10 degrees N, west of 170 degrees E. Although a large part of the interannual sea level variability in the western tropical Pacific is related to the oceanic remote adjustment to wind stress forcing, the contributions of local responses to surface heating and wind forcing cannot be overlooked. (C) 2013 Elsevier B.V. All rights reserved.Three net surface heat flux products, namely from 1) version 2 of Common Ocean Reference Experiment (CORE.2), 2) Objectively Analyzed Air-Sea Fluxes (OAFlux), and 3) the European Centre for Medium-Range Weather Forecasts operational ocean analysis/reanalysis system (ECMWF ORA-S3), and three wind stress products, namely from I) CORE.2, 2) Simple Ocean Data Assimilation Reanalysis, version 2.1.6 (SODA 2.1.6), and 3) ECMWF ORA-S3 are used to investigate the abilities of four simple oceanic mechanisms in explaining the interannual variance of altimetry-derived sea surface height (SSH) anomalies in the tropical Pacific Ocean over the period 1993-2006. It is found that local response to surface heating plays an important role in sea level rise along the western equatorial Pacific (150 degrees-180 degrees E). The dominant processes affecting interannual variability of observed SSH anomalies vary regionally in the tropical Pacific; local response to surface heating, local Ekman pumping, wind-induced first baroclinic mode Rossby waves and the eastern boundary forcing are all important. Both the local response to surface heating and the eastern boundary forcing are important in explaining the interannual variance of observed SSH anomalies in the northeastern tropical Pacific; while the dominant contribution to interannual sea level variability in the southeastern tropical Pacific is from the eastern boundary forcing, the local Ekman pumping plays a relatively minor role in the interannual SSH change there. The wind-induced first baroclinic mode Rossby waves dominate interannual SSH variability in the western tropical Pacific, excluding the area of 2 degrees-10 degrees N, west of 170 degrees E. Although a large part of the interannual sea level variability in the western tropical Pacific is related to the oceanic remote adjustment to wind stress forcing, the contributions of local responses to surface heating and wind forcing cannot be overlooked. (C) 2013 Elsevier B.V. All rights reserved

    Evaluation of Chinese Quad-polarization Gaofen-3 SAR Wave Mode Data for Significant Wave Height Retrieval

    Get PDF
    Our work describes the accuracy of Chinese quad-polarization Gaofen-3 (GF-3) synthetic aperture radar (SAR) wave mode data for wave retrieval and provides guidance for the operational applications of GF-3 SAR. In this study, we evaluated the accuracy of the SAR-derived significant wave height (SWH) from 10,514 GF-3 SAR images with visible wave streaks acquired in wave mode by using the existing wave retrieval algorithms, e.g., the theoretical-based algorithm parameterized first-guess spectrum method (PFSM), the empirical algorithm CSAR_WAVE2 for VV-polarization, and the algorithm for quad-polarization (Q-P). The retrieved SWHs were compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis field with 0.125° grids. The root mean square error (RMSE) of the SWH is 0.57 m, found using CSAR_WAVE2, and this RMSE value was less than the RMSE values for the analysis results achieved with the PFSM and Q-P algorithms. The statistical analysis also indicated that wind speed had little impact on the bias with increasing wind speed. However, the retrieval tended to overestimate when the SWH was smaller than 2.5 m and underestimate with an increasing SWH. This behavior provides a perspective of the improvement needed for the SWH retrieval algorithm using the GF-3 SAR acquired in wave mode

    Analysis of Typhoon-Induced Waves along Typhoon Tracks in the Western North Pacific Ocean, 1998–2017

    No full text
    In this study, Version 5.16 of the WAVEWATCH-III (WW3) model is used to simulate parameters of typhoon-generated wave fields in the Western North Pacific Ocean during the period 1998–2017. From a database of more than 300 typhoons, typhoon tracks are partitioned into six groups by their direction of motion and longitude of recurvature track. For typhoons that recurve east of 140° E, or track toward mainland Asia, regions of high significant wave height (SWH) values are separated by a minimum in SWH near 30° N. Partitioning SWH into wind sea and swell components demonstrates that variations in typhoon tracks produce a much stronger signal in the wind sea component of the wave system. Empirical orthogonal function (EOF) analysis is used to compute the four leading modes of variation in average SWH simulated by the WW3 model. The first EOF mode contributes to 17.3% of the total variance; all other modes contribute less than 10%. The first EOF mode also oscillates on an approximately 1-year cycle during the period 1998–2017. Overall, typhoon-induced wave energy dominates north of 30° N. Temporal analysis of the leading principal component of SWH indicates that (a) the intensity of the wave pattern produced by westward-tracking typhoons decreased during the last 20 years, and (b) typhoons that recurve east of 140° E and those that track westward toward southeast Asia are largely responsible for the decadal variability of typhoon-induced wave distribution

    The Respondence of Wave on Sea Surface Temperature in the Context of Global Change

    No full text
    Several aspects of global climate change, e.g., the rise of sea level and water temperature anomalies, suggest the advantages of studying wave distributions. In this study, WAVEWATCH-III (WW3) (version 6.07), which is a well-known numerical wave model, was employed for simulating waves over global seas from 1993–2020. The European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus Marine Environment Monitoring Service (CMEMS), current and sea level were used as the forcing fields in the WW3 model. The validation of modelling simulations against the measurements from the National Data Buoy Center (NDBC) buoys and Haiyang-2B (HY-2B) altimeter yielded a root mean square error (RMSE) of 0.49 m and 0.63 m, with a correlation (COR) of 0.89 and 0.90, respectively. The terms calculated by WW3-simulated waves, i.e., breaking waves, nonbreaking waves, radiation stress, and Stokes drift, were included in the water temperature simulation by a numerical circulation model named the Stony Brook Parallel Ocean Model (sbPOM). The water temperature was simulated in 2005–2015 using the high-quality Simple Ocean Data Assimilation (SODA) data. The validation of sbPOM-simulated results against the measurements obtained from the Array for Real-time Geostrophic Oceanography (Argo) buoys yielded a RMSE of 1.12 °C and a COR of 0.99. By the seasonal variation, the interrelation of the currents, sea level anomaly, and significant wave heights (SWHs) were strong in the Indian Ocean. In the strong current areas, the distribution of the sea level was consistent with the SWHs. The monthly variation of SWHs, currents, sea surface elevation, and sea level anomalies revealed that the upward trends of SWHs and sea level anomalies were consistent from 1993–2015 over the global ocean. In the Indian Ocean, the SWHs were obviously influenced by the SST and sea surface wind stress. The rise of wind stress intensity and sea level enlarges the growth of waves, and the wave-induced terms strengthen the heat exchange at the air–sea layer. It was assumed that the SST oscillation had a negative response to the SWHs in the global ocean from 2005–2015. This feedback indicates that the growth of waves could slow down the amplitude of water warming

    Wind Field Retrieval with Rain Correction from Dual-Polarized Sentinel-1 SAR Imagery Collected during Tropical Cyclones

    No full text
    The purpose of this study is to include rain effects in wind field retrieval from C-band synthetic aperture radar (SAR) imagery collected under tropical cyclone conditions. An effective and operationally attractive approach to detect rain cells in SAR imagery is proposed and verified using four Sentinel-1 (S-1) SAR images collected in dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) interferometric-wide swath imaging mode during the Satellite Hurricane Observation Campaign. SAR images were collocated with ancillary observations that include sea surface wind and rain rate from the Stepped-Frequency Microwave Radiometer (SFMR) on board of the National Oceanic and Atmospheric Administration aircraft. The winds are inverted from VV- and VH-polarized S-1 image using the CMOD5.N and S1IW.NR geophysical model functions (GMFs), respectively. Location and radius of cyclone’s eye, together with the TC central pressure, are calculated from the VV-polarized SAR-derived wind and a parametric model. A cost function is proposed that consists of the difference between the measured VV-polarized SAR normalized radar cross section (NRCS) and the NRCS predicted using CMOD5.N forced with the wind speed retrieved by the VH-polarized SAR images using S1IW.NR GMF and the wind direction retrieved from the patterns visible in the SAR image. This cost function is related to the SFMR rain rate. Experimental results show that the difference between measured and predicted NRCS values range from 0.5 dB to 5 dB within a distance of 100 km from the cyclone’s eye, while the difference increases spanning from 3 dB to 6 dB for distances larger than 100 km. Following this rationale, first the rain bands are extracted from SAR imagery and, then, the composite wind fields are reconstructed by replacing: (1) dual-polarized SAR-derived winds over the rain-free regions; (2) winds simulated using the radial-vortex model over the rain-affected regions. The validation of the composite wind speed against SFMR winds yields a −1 and >0.7 correlation (COR) at all flow directions up to retrieval speeds of 70 m s−1. This result outperforms the winds estimated using the VH-polarized S1IW.NR GMF, which call for high error accuracy, such as about 4 m s−1 with a 0.45 COR ranged from 330° to 360°

    A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants

    No full text
    Novel 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalysts were fabricated by the solvothermal and in-situ precipitation methods, followed by light reduction treatment. The Ag/AgCl nanoparticles were homogeneously distributed on 3D BiOCOOH microspheres. These obtained catalysts were characterized by XRD, SEM, TEM, diffuse reflectance spectra (DRS), and photoluminescence (PL). As expected, they exhibited extraordinary photocatalytic capabilities for the elimination of rhodamine B (RhB) and ciprofloxacin (CIP) under simulated sunlight, the results revealed that the Ag/AgCl/BiOCH-3 with 20 wt.% of Ag/AgCl possessed the maximum activity, and the rate constant for the RhB degradation reached up to 0.1353 min−1, which was about 16.5 or 12.2 times that of bare BiOCOOH or Ag/AgCl. The PL characterization further verified that Ag/AgCl/BiOCOOH heterojunctions were endowed with the effective separation of photogenerated carriers. The excellent photocatalytic ability of Ag/AgCl/BiOCOOH could be credited to the synergistic interactions between Ag/AgCl and BiOCOOH, which not only substantially widened the light absorption, but also evidently hindered the charge recombination. The trapping experiments revealed that the dominant reactive species in RhB removal were h+, •OH, and •O2− species. In addition, Ag/AgCl/BiOCOOH was quite stable and easily recyclable after multiple cycles. The above results imply that the 3D flower-like Ag/AgCl/BiOCOOH ternary heterojunction photocatalyst holds promising prospects in treating industrial wastewater

    Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery

    No full text
    This paper proposes a semi-automatic green tide extraction method based on the NDVI to extract Yellow Sea green tides from 2008 to 2022 using remote sensing (RS) images from multiple satellites: GF-1, Landsat 5 TM, Landsat 8 OLI_TIRS, HJ-1A/B, HY-1C, and MODIS. The results of the accuracy assessment based on three indicators: Precision, Recall, and F1-score, showed that our extraction method can be applied to the images of most satellites and different environments. We traced the source of the Yellow Sea green tide to Jiangsu Subei shoal and the southeastern Yellow Sea and earliest advanced the tracing time to early April. The Gompertz and Logistic growth curve models were selected to predict and monitor the extent and duration of the Yellow Sea green tide, and uncertainty for the predicted growth curve was estimated. The prediction for 2022 was that its start and dissipation dates were expected to be June 1 and August 15, respectively, and the accumulative cover area was expected to be approximately 1190.90–1191.21 km2
    corecore