3,314 research outputs found

    Higher-order effects on the incompressibility of isospin asymmetric nuclear matter

    Get PDF
    Analytical expressions for the saturation density as well as the binding energy and incompressibility at the saturation density of asymmetric nuclear matter are given exactly up to 4th-order in the isospin asymmetry delta =(rho_n - rho_p)/rho using 11 characteristic parameters defined at the normal nuclear density rho_0. Using an isospin- and momentum-dependent modified Gogny (MDI) interaction and the SHF approach with 63 popular Skyrme interactions, we have systematically studied the isospin dependence of the saturation properties of asymmetric nuclear matter, particularly the incompressibility Ksat(δ)=K0+Ksat,2δ2+Ksat,4δ4+O(δ6)K_{sat}(\delta )=K_{0}+K_{sat,2}\delta ^{2}+K_{sat,4}\delta ^{4}+O(\delta ^{6}) at the saturation density. Our results show that the magnitude of the high-order Ksat,4K_{sat,4} parameter is generally small compared to that of the K_{\sat,2} parameter. The latter essentially characterizes the isospin dependence of the incompressibility at the saturation density and can be expressed as Ksat,2=Ksym6LJ0K0LK_{sat,2}=K_{sym}-6L-\frac{J_{0}}{K_{0}}L, Furthermore, we have constructed a phenomenological modified Skyrme-like (MSL) model which can reasonably describe the general properties of symmetric nuclear matter and the symmetry energy predicted by both the MDI model and the SHF approach. The results indicate that the high-order J0J_{0} contribution to Ksat,2K_{sat,2} generally cannot be neglected. In addition, it is found that there exists a nicely linear correlation between KsymK_{sym} and LL as well as between J0/K0J_{0}/K_{0} and K0K_{0}. These correlations together with the empirical constraints on K0K_{0}, LL, Esym(ρ0)E_{sym}(\rho_{0}) and the nucleon effective mass lead to an estimate of Ksat,2=370±120K_{sat,2}=-370\pm 120 MeV.Comment: 61 pages, 12 figures, 6 Tables. Title changed a little and results of several Skyrme interactions updated. Accepted version to appear in PR

    Online Updating of Statistical Inference in the Big Data Setting

    Full text link
    We present statistical methods for big data arising from online analytical processing, where large amounts of data arrive in streams and require fast analysis without storage/access to the historical data. In particular, we develop iterative estimating algorithms and statistical inferences for linear models and estimating equations that update as new data arrive. These algorithms are computationally efficient, minimally storage-intensive, and allow for possible rank deficiencies in the subset design matrices due to rare-event covariates. Within the linear model setting, the proposed online-updating framework leads to predictive residual tests that can be used to assess the goodness-of-fit of the hypothesized model. We also propose a new online-updating estimator under the estimating equation setting. Theoretical properties of the goodness-of-fit tests and proposed estimators are examined in detail. In simulation studies and real data applications, our estimator compares favorably with competing approaches under the estimating equation setting.Comment: Submitted to Technometric

    On fixed effects estimation in spline-based semiparametric regression for spatial data

    Get PDF
    Spline surfaces are often used to capture spatial variability sources in linear mixed-effects models, without imposing a parametric covariance structure on the random effects. However, including a spline component in a semiparametric model may change the estimated regression coefficients, a problem analogous to spatial confounding in spatially correlated random effects. Our research aims to investigate such effects in spline-based semiparametric regression for spatial data. We discuss estimators\u27 behavior under the traditional spatial linear regression, how the estimates change in spatial confounding-like situations, and how selecting a proper tuning parameter for the spline can help reduce bias

    The contributions of qqqqqˉqqqq\bar{q} components to the axial charges of proton and its resonances

    Full text link
    We calculate the axial charges of the proton and its resonances in the framework of the constituent quark model, which is extended to include the qqqqqˉqqqq\bar{q} components. If 20% admixtures of the qqqqqˉqqqq\bar{q} components in the proton are assumed, the theoretical value for the axial charge in our model is in good agreement with the empirical value, which can not be well reproduced in the traditional constituent quark model even though the SU(6)O(3)SU(6) \bigotimes O(3) symmetry breaking or relativistic effect is taken into account. We also predict an unity axial charge for N(1440)N^{*}(1440) with 30% qqqqqˉqqqq\bar{q} components constrained by the strong and electromagnetic decays.Comment: 4 pages, 4 table

    An hourglass model for the flare of HST-1 in M87

    Full text link
    To explain the multi-wavelength light curves (from radio to X-ray) of HST-1 in the M87 jet, we propose an hourglass model that is a modified two-zone system of Tavecchio & Ghisellini (hereafter TG08): a slow hourglass-shaped or Laval nozzle-shaped layer connected by two revolving exponential surfaces surrounding a fast spine, through which plasma blobs flow. Based on the conservation of magnetic flux, the magnetic field changes along the axis of the hourglass. We adopt the result of TG08---the high-energy emission from GeV to TeV can be produced through inverse Compton by the two-zone system, and the photons from radio to X-ray are mainly radiated by the fast inner zone system. Here, we only discuss the light curves of the fast inner blob from radio to X-ray. When a compressible blob travels down the axis of the first bulb in the hourglass, because of magnetic flux conservation, its cross section experiences an adiabatic compression process, which results in particle acceleration and the brightening of HST-1. When the blob moves into the second bulb of the hourglass, because of magnetic flux conservation, the dimming of the knot occurs along with an adiabatic expansion of its cross section. A similar broken exponential function could fit the TeV peaks in M87, which may imply a correlation between the TeV flares of M87 and the light curves from radio to X-ray in HST-1. The Very Large Array (VLA) 22 GHz radio light curve of HST-1 verifies our prediction based on the model fit to the main peak of the VLA 15 GHz radio light curve.Comment: 14 pages, 2 figures, accepted for publication in A

    Optically-Nonactive Assorted Helices Array with Interchangeable Magnetic/Electric Resonance

    Full text link
    We report here the designing of optically-nonactive metamaterial by assembling metallic helices with different chirality. With linearly polarized incident light, pure electric or magnetic resonance can be selectively realized, which leads to negative permittivity or negative permeability accordingly. Further, we show that pure electric or magnetic resonance can be interchanged at the same frequency band by merely changing the polarization of incident light for 90 degrees. This design demonstrates a unique approach to construct metamaterial.Comment: 15 pages, 4 figure
    corecore