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Abstract

Spline surfaces are often used to capture spatial variability sources in linear mixed-effects
models, without imposing a parametric covariance structure on the random effects. How-
ever, including a spline component in a semiparametric model may change the estimated
regression coefficients, a problem analogous to spatial confounding in spatially correlated
random effects. Our research aims to investigate such effects in spline-based semiparamet-
ric regression for spatial data. We discuss estimators’ behavior under the traditional spatial
linear regression, how the estimates change in spatial confounding-like situations, and how
selecting a proper tuning parameter for the spline can help reduce bias.

Key words: Semiparametric regression, spatial interaction, spatial statistics

1. Introduction

Spatial confounding refers to correlation between a spatial random error and covariates
in a spatial regression model. The inclusion of a spatial random error can impact the
estimates of the regression coefficients β in ways that are difficult to anticipate. This issue,
as we outline in the following paragraphs, is found in many spatial statistics applications.
The purpose of our research is to investigate an analogy to spatial confounding and its
effect in semiparametric regression for spatial data.

Reich et al. (2006) derived bias and variance inflation terms for the regression coefficients
in spatial lattice data models, but proposed no correction to the spatial confounding effect.
Hodges and Reich (2010) further developed a Bayesian approach for spatial lattice data,
and outlined common mechanisms of spatial confounding. They considered two situations,
namely, (A) “Random effects are a formal device to implement a smoother”, but also
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a device for when the analyst either knows there are missing covariates, or was unable
to collect them, and therefore adds a random effect to the model to try to recover these
effects. This strategy corresponds to approaches seen in Clayton et al. (1993), Ruppert et al.
(2003), Reich et al. (2006) and Stroup (2012). Hodges and Reich (2010) concluded that
for these scenarios, fitting a spatial random effects model can either remove or introduce
bias, and is not conservative in the sense that if there’s no actual spatial effect present,
the model might produce spurious results. The second mechanism of spatial confounding
is (B) “The random effect is a Scheffé-style random effect”, which depends on how the
covariates are observed. Fixed and known covariates result in unbiased estimates for the
regression coefficients β, but when the regression covariates are actually randomly drawn
from a probability distribution and the model is conditioned on their realization (as in
Paciorek, 2010), then fitted models with or without a spatial random effect can be biased.
Hodges and Reich (2010) suggested to attribute most of the variability of the response
to the regression effect, by fitting the data to covariates alone first, and smoothing the
residuals of that fit. Another strategy for spatial lattice data was employed by Hughes and
Haran (2013), in which the spatial component is made orthogonal to the covariates, and a
subset of the eigenvectors is used to model spatial variability, mitigating confounding.

In a different approach, Paciorek (2010) focused on the spatial regression where both
covariates and the spatial random effects are realizations of a spatial process, and showed
that bias is introduced in the estimators of β even when the variance of the spatial process
is known. More recently, Hanks et al. (2015) considered spatial regression models and
proposed to force a fitted spatial random effect to be orthogonal to the covariates. They
emphasized that such approach works only to recover the ordinary least squares point
estimates of β. Another important observation made in Hanks et al. (2015) is that even
when fixed and random effects are generated independently, if both are spatially smooth,
then they can still be collinear and unconditional inference on β through ordinary least
squares or the orthogonal approach of their study could lead to spurious conclusions about
the importance of the covariates in the model.

Most of the work on spatial confounding was done for Bayesian models and methods
(Hodges and Reich, 2010; Hughes and Haran, 2013) or, more recently, kriging (Hanks et al.,
2015). Here we consider a common semiparametric approach to spatial regression and in
particular the role of spline-based random effects and spatial confounding. Research on
semiparametric models with splines is available under specific conditions – the most impor-
tant being that the unknown functional component of the data model is deterministic and
smooth with independent errors. Rice (1986) derived the asymptotics for semiparametric
univariate spline models, and argued that automatic smoothing (such as by cross-validation
or generalized cross-validation) is invalid for the estimation of β, a conclusion shared by
Green et al. (1985). Speckman (1988) introduced a different penalty such that the fixed
components have negligible asymptotic bias, but in the context of kernel smoothing and
for independent errors. Most of these results were summarized in Hastie and Tibshirani
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(1990). More recently, Schimek (2000) considered computational implementation of semi-
parametric spline models. The problem of spatial confounding is related to the concurvity
issue observed in Hastie and Tibshirani (1990), in which linear combinations of smoother
terms might approximate a covariate or another smoother term.

Here we focus on thin-plate splines (Wahba, 1990b), which are a natural extension of
smoothing splines to spatial problems, and share a strong connection with kriging (Cressie,
1993). This connection was debated in a series of letters (Cressie, 1989; Wahba, 1990a)
which concluded that splines are appropriate for surfaces that are deterministic, or deter-
ministic with independent noise (Cressie, 1990). Later, Altman (2000) argued that splines
often do not have the optimal prediction ability of kriging because of improper selection
of the tuning parameter, since this selection does not reflect the dependency seen in spa-
tial processes. On the other hand, Nychka (2000) argued that geostatistics literature does
not emphasize enough that kriging, being a linear combination of basis functions pre-
scribed by the covariance, can be seen as a smoother, and therefore, important parameters
of the covariance structure can be found by cross-validation based methods or restricted
maximum-likelihood.

The remainder of this document is organized as follows. In Section 2, we present a
spatial data model where the spatial random effect is a stochastic spatial process, and
consider thin-plate splines for model fitting. We then investigate the properties of the
model estimators and develop a tuning parameter selection procedure. A simulation study
is conducted in Section 3. In Section 4, we investigate the spatial confounding issue in the
semiparametric thin-plate splines regression.

2. Semiparametric spline-based regression

2.1. Spatial data model

Let D ⊂ R2 be a spatial domain of interest. Consider the spatial linear regression model
for the response variable,

Y (s) = β0 + β1x1(s) + · · ·+ βpxp(s) + η(s) + ε(s), i = 1, . . . , n, (1)

where s = (s1, s2) ∈ D, η(s) is a spatial process with spatial covariance function γ(s, s∗) =
Cov (Y (s), Y (s∗)), ε(s) are i.i.d. measurement errors with E(ε(s)) = 0 and Var (ε(s)) = σ2.
Assume that the spatial process η(s) has mean zero and is mean squared differentiable, in
the sense that

lim
‖δ‖→0

E
(
‖η(s)− η(s + δ)‖2

)
= 0,

where ‖ · ‖ denotes the L2 norm. Mean squared differentiability implies η(s) has a spatial
covariance function γ(s, s∗) that is continuous. Define φk(s), k = 1, 2, . . . to be continuous
orthonormal functions such that∫

D
γ(s, s∗)φk(s

∗)ds∗ = ξkφk(s),

3
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where ξk > 0, k = 1, 2, . . . . Then, the spatial covariance function γ has a spectral decom-
position

γ(s, s∗) =
∞∑
k=1

ξkφk(s)φk(s
∗).

Furthermore, η(s) admits a Karhunen-Loève decomposition

η(s) =
∞∑
k=1

ξ
1/2
k Zkφk(s),

where {Zk}∞k=1 are i.i.d. N(0, 1) (Loève, 1978).
With the response variable Y (s) observed at sampling sites s1, . . . , sn, let y = (y(s1),

. . . , y(sn))′ denote the vector of observations. Let X be an n× (p+ 1) design matrix with
a column of ones and covariates x1, . . . ,xp observed at s1, . . . , sn, and β = (β0, β1, . . . , βp)

′

denote the regression coefficients. Let η = (η(s1), . . . , η(sn))′ with E(η) = 0 and Var (η) =∑∞
k=1 ξkφkφ

′
k, where φk = (φk(s1), . . . , φk(sn))′. Suppose a standard linear regression

model is fitted to spatial data, with ordinary least squares estimates of β given by

β̃ = (X′X)
−1

X′y.

Since E(y) = Xβ, the estimates β̃ are unbiased. However,

Var (β̃) = σ2(X′X)−1 +
∞∑
k=1

ξkψkψ
′
k, (2)

where ψk = (X′X)−1 X′φk. The second term in (2) is due to the variance of the spatial
process.

2.2. Thin-plate spline estimation

Often one wishes to fit the spatial data model (1) without pre-specifying a spatial
covariance structure for the data, but somehow control for this spatial variability. In this
case, a spline provides a viable approach (Stroup, 2012). In this section, we describe
estimation based on thin-plate spline and its properties under the spatial data model (1).

Definition 2.1 (Thin-plate spline). A thin-plate spline (Wahba, 1990b) is the solution of
the variational problem,

fλ = arg min
g∈W2

2

n∑
i=1

{Y (si)− g(si)}2 + λJ [g], (3)

where W2
2 is the class of functions g : R2 → R that are differentiable and have bounded

second derivatives, J [g] is a roughness penalty on g, and λ > 0 is a tuning parameter.

4
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Thin-plate splines are in general a combination of low-order polynomials and a linear
combination of radial basis functions. For example, for a penalty based on the squared
norm of the bending energy,

J [g] =

∫
R2

{
∂2

∂s21
g(s)

}2

+ 2

{
∂2

∂s1∂s2
g(s)

}2

+

{
∂2

∂s22
g(s)

}2

ds, (4)

where s = (s1, s2)
′, we have a thin-plate spline that has a closed form given by

f(s) = θ0 + θs1s1 + θs2s2 +
n∑
i=1

θiϕi(s),

where θ0 is the intercept, θs1 and θs2 are the slopes for the (s1, s2) coordinates of s, {θi}ni=1

are the spline coefficients, subject to the constraints
∑n

i=1 θi =
∑n

i=1 θis1,i =
∑n

i=1 θis2,i = 0,
and ϕi are the collection of thin-plate spline basis functions, given by

ϕi(s) = ‖s− si‖2 log ‖s− si‖.

The thin-plate spline can also be written as fλ(s) = θ0 + θs1s1 + θs2s2 + Φ(s)θ, where
Φ(s) = (ϕ1(s), . . . , ϕn(s)), and θ = (θ1, . . . , θn)′. The next step is to fit a semiparametric
model with covariates and a thin-plate spline to the spatial data. It requires adjustments
for identifiability: θ0 and β0 are redundant. Furthermore, since J [θ0 + θs1s1 + θs2s2] ≡
0, we treat s1 and s2 as part of the design matrix X as well, so now each row of X
is given by xi = (1, s1,i, s2,i, x1,i, . . . , xp,i), i = 1, . . . , n. Let Φ be the n × n matrix of
basis functions (Φ(s1)

′, . . . ,Φ(sn)′)′. The coefficients θ0, θs1 , θs2 , β1, . . . , βp, θ1, . . . , θn are
estimated by minimizing

Q(β,θ) = ‖Y −Xβ −Φθ‖2 + λJ [f ] (5)

subject to X′θ = 0. The roughness penalty for thin-plate splines can be rewritten as

J [f ] = θ′Rθ (6)

where R is an n× n matrix with entries

Ri,i′ = ϕi(si′). (7)

The result in (7) is particular to thin-plate splines (Wahba, 1990b, p. 32). The solutions
for (5), for fixed λ are (

β̂

f̂

)
=

(
{X′(I− Sλ)X}−1X′(I− Sλ)y

Sλ(y −Xβ̂),

)
(8)

5
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where Sλ = Φ(Φ′Φ + λR)−1Φ′ is the smoother matrix. We will refer to β̂ and f̂λ as the
penalized least squares estimates. From (8), the regression coefficients estimates β̂ can be
viewed as weighted least squares, with weights based on the complement of the smoother
function. The estimator f̂λ is obtained by applying the smoother matrix to the detrended
data.

A feature of thin-plate splines is that it shares a similar structure to the universal
kriging, which is the best linear unbiased prediction (Cressie, 1993), in the sense that
the optimization of problem (5) using variogram entries instead of thin-plate spline basis
functions results in kriging estimates.

2.3. Bias and variance of estimators

Next, we show the expected value and the variance of the penalized least squares esti-
mators.

Proposition 2.1. Under the spatial data model (1), for any fixed choice of λ, the penalized
least squares estimators in (8) are unbiased.

Proposition 2.2. Under the spatial data model (1), for any fixed choice of λ, the variance
of β̂ can be written as

Var(β̂) = σ2{X′(I− Sλ)X}−1X′(I− Sλ)2X{X′(I− Sλ)X}−1 +
∞∑
k=1

ξkψλ,kψ
′
λ,k

= E
(

Var (β̂|η)
)

+ Var
(
E(β̂|η)

)
≡ VarX(β̂) + Varη(β̂)

where ψλ,k = {X′(I− Sλ)X}−1 X′(I− Sλ)φk.

We focus now on Var (β̂), since our main interest is in the estimation of the regression
coefficients. There is a trade-off in the two components of Var (β̂): Var X(β̂), which is the
variability of β̂ attributed to the columns of X, and Var η(β̂) which is due to the spatial

component η(s). The component Var X(β̂) reduces to σ2(X′X)−1 when λ = 0. For λ > 0,
there is a shrinkage effect similar to the one observed in ridge regression. Thus, the tuning
parameter λ does not only control the smoothness of f̂λ, but also a variability trade-off in
the estimation of β. On the other hand, the component Var η(β̂) depends on the relation
between X and the eigenfunctions φk(s), reflecting any non-smooth effects of η that are
projected onto the columns of X, due to the weight I−Sλ. An illustration of this trade-off,
for a single β̂1, where x1(s) is uncorrelated with η, is shown in Figure 1. We can see that
there is a local minimum, as a function of λ, for Var X(β̂1), but Var η(β̂1) seems to increase
monotonically, which is reflecting any non-smooth variation in η that is collinear with X.
The minimum of Var (β̂) would constitute an ideal smoothing parameter for the model,
when the interest lies only in β̂, since it minimizes MSE(β̂).

6
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Figure 1: An illustration of the trade-off between the two components of Var (β̂1) when η(s) is independent

of X. Var X(β̂1) is the variance attributed to the design matrix X and Var η(β̂1) is the variance attributed
to the spatial process η(s).

2.4. Selection of the tuning parameter

Selection of the tuning parameter is usually based on cross-validation, which approxi-
mates the prediction squared error (PSE) (Hastie and Tibshirani, 1990). In other words,
let

PSE(λ) =
1

n

n∑
i=1

E{y∗(si)− ŷλ(si)}2,

where y∗(si) is a new observation at sampling site si, and ŷλ(si) = x(si)
′β̂ − f̂λ(si). If we

let

CV(λ) =
1

n

n∑
i=1

E{y(si)− ŷ−iλ (si)}2,

where ŷ−iλ (si) is the prediction from a model fitted while excluding observation i, we have

E{CV(λ)} ≈ PSE(λ).

The λ∗ that minimizes CV(λ) is not necessarily optimal for MSE(β̂). Since the esti-
mators of β are unbiased under model (1), we can minimize tr(Var (β̂)) instead. However,
since η(s) is not observable directly, this parameter is optimal only for minimizing Var X(β̂),
(i.e., in the ridge regression sense). Suppose the effect of Var η(β̂) is small. We now develop
a new algorithm to find this optimal value:

7
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Computational algorithm

• Find λ∗GCV that minimizes

GCV(λ) =
n
∑n

i=1(yi − ŷi)2

{n− tr(Aλ)}2

where ŷ = (ŷ(s1), . . . , ŷ(sn))′ = Aλy = Xβ̂ + f̂λ.

• For a grid of positive weights {w}, evaluate tr(Var X(β̂)), where λ = wλ∗GCV. Then,
choose the λ value that minimizes the trace.

We use GCV instead of CV for faster computational speed.

3. Simulation study

3.1. Simulation setup

We conducted a simulation study to evaluate the effect of spatial dependence on regres-
sion coefficient estimates, as well as evaluating the performance of the selection procedure
for the tuning parameter λ. We simulated from the spatial model (1)

Y (s) = β′x(s) + η(s) + ε(s),

where the spatial effect η(s) is a Gaussian random field with a Matérn covariance function

γ(d; ρ, κ, σ2
η) =

σ2
η

2κ−1Γ(κ)

(√
2κ
d

ρ

)κ
Kκ

(√
2κ
d

ρ

)
,

where Kκ is the modified Bessel function of second kind. The parameter κ controls the
smoothness of the process, with larger values of κ corresponding to smoother realizations. A
process with Matérn covariance is κ-times differentiable. The parameter σ2

η is the variance
of η(s), the parameter ρ controls the scale of dependency, which means that larger values
of ρ correspond to stronger spatial dependence. Figure 2 shows a realization of a Gaussian
process simulated with the same random seed, but with different choices of ρ and κ for the
Matérn covariance.

The simulation setup is as follows.

• The number of simulations was S = 400. A total of n = 100 locations s1, . . . , sn
were sampled randomly over the spatial domain [0, 1] × [0, 1], and were used as the
sampling sites.

• Two sets of covariates, x1(si), x2(si) were sampled from N(0, 1), and then treated as
fixed, for i = 1, . . . , n.

8
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Figure 2: Examples of Matérn covariance processes for different parameters: each panel shows the realiza-
tion of a single Gaussian process with choices of parameters κ = 0.5, 1.5, 2.5 and ρ = 0.02, 0.05, 0.2, 0.5.

• The intercept and slopes were set to β0 = β1 = β2 = 1.

• The spatial process η(s) has a Matérn covariance function with parameters κ =
0.5, 1.5 or 2.5 and ρ = 0.02, 0.05, 0.2 or 0.5, while the variance is σ2

η = 1.

• The measurement errors ε(si) are i.i.d. N(0, 1), for i = 1, . . . , n.

We compared the estimation of β using the standard linear model estimates (denoted
hereafter as LM), the restricted maximum likelihood estimates (denoted as RM), and the
semiparametric thin-plate spline fit, the latter using regular GCV (denoted as SP) and our
correction to GCV to select the tuning parameter (denoted as SPc). For the RM method
we estimated the Matérn covariance function parameters with the geoR package (Ribeiro
Jr. and Diggle, 2015). For the correction in the SPc approach, we searched w in the interval
of [0.5, 1.5].

3.2. Simulation results

In Figure 3, we have the mean squared prediction error (MSPE) broken down by the
spatial process parameters. The results suggest that including a thin-plate spline compo-
nent improves the MSPE in general, and more so, when the scale parameter ρ is larger.
This might be due to the relatively small number of sampled data points, which make it

9
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Figure 3: Mean squared prediction error (MSPE) for 400 simulations. LM refers to the standard linear
model, RM refers to restricted maximum likelihood estimation, SP is the semiparametric thin-plate spline
model and SPc is the SP model with λ estimated by the algorithm from Section 2.4. The spatial process
has a Matérn covariance function with parameters κ = 0.5, 1.5, 2.5 and ρ = 0.02, 0.05, 0.2, 0.5.

harder for the thin-plate spline to fit smooth variability under a certain resolution. Over-
all, the semiparametric methods perform better as the scale parameter increases, yielding
MSPEs that are smaller and varying less across simulated replications as ρ increases. The
LM also yields smaller MSPE as ρ increases, but the MSPE is always larger than the semi-
parametric methods. Furthermore, the variability of the observed MSPE for LM increases
with ρ. The performance of the RM approach is similar to LM, in terms of MSPE. Since
the data are observed at sampling locations only, the smoothness parameter κ does not
seem to affect the spline model substantially. The smoothing parameter obtained with our
correction is in general 5% smaller than the smoothing parameter obtained by GCV. It
does slightly increase the MSPE.

The estimates of β are shown in Figure 4, and we observe that the estimates under LM,
RM and the SP models are not very different. The ratio of the sum of squared deviances
from the true parameters (β1 = 1, β2 = 1), which is the relative efficiency of the estimators,
suggests that the SP model compared to the LM model is roughly 5% less efficient when
ρ = 0.02, but with about the same efficiency when ρ = 0.05, and roughly 10% more efficient
when ρ = 0.2 or ρ = 0.5. For this case, the correction of the tuning parameter did not
improve the results from regular GCV-based tuning.
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Figure 4: Boxplots of β̂ using the standard linear model (LM), the restricted maximum likelihood model
(RM), the semiparametric thin-plate spline model (SP) and the SP model with λ estimated by the correction

algorithm from Section 2.4 (SPc); the color coding indicates β̂1 and β̂2. The spatial process has a Matérn
covariance function with parameters κ = 0.5, 1.5, 2.5 and ρ = 0.02, 0.05, 0.2, 0.5. The horizontal solid line
indicates the true value of β.

4. Spatial confounding

The simulation results in the Section 3 were derived under the assumption that the co-
variates x(s) and the spatial random process η(s) are independent. Furthermore, sampling
the covariates from independent Gaussian processes makes it unlikely that the realizations
are going to exhibit any sort of collinearity. In this section, we will expand upon the sim-
ulation by considering the possibility of relations between the covariates and the spatial
processes.

4.1. Simulation setup

We expanded the simulation in Section 3 by considering the following two scenarios:

(A) Generate x2(s) as a Gaussian random field with a Matérn covariance function and
parameters κ = 2.5, ρ = 0.2. This experiment considers the case that xj(s), j = 1, 2
and η(s) are independent, but varying smoothly on the same scale (see scenario (A)
of Hodges and Reich, 2010 and Hanks et al., 2015).
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(B) Generate x2(s) such that Corr (η(s), x2(s)) ≈ 0.4. This experiments with spatial
confounding such that xj(s), j = 1, 2 and η(s) are correlated (see scenario (B) of
Hodges and Reich, 2010 and Paciorek, 2010).

We illustrate the behavior of estimates (8) under spatial confounding in a similar way to
Figure 1. Scenario (A) is illustrated in Figure 5(A). There are two sets of curves now, one
corresponding to β̂1 for reference, and the other corresponding to β̂2, which is the coefficient
of the covariate confounded with the spatial process. In this case, the effect of the spatial
process is strong on the variability of β̂2. Increasing the tuning parameter λ does seem to
mitigate this issue, forcing most of the smooth variability to be attributed to f̂λ.

Scenario (B) is shown in Figure 5(B). Since by assumption x2(s) is known and fixed, then
the conditional distribution of [η(s)|x2(s)] can be calculated. Let η = (η(s1), . . . , η(sn))′

and x2 = (x2(s1), . . . , x2(sn))′. We have

η|x2 ∼ N(0.4x2,Ση − 0.42I),

which shows that the increasing effect of the random component on Var (β̂2) (Figure 5(A))
is a bias term. While in the model fitting most of the smooth variability is attributed to f̂λ,
in theory η(s) itself given x2(s) is not very smooth. We will see how this will be reflected
back into Var (β̂2) in the next section.

4.2. Simulation results

We will focus on the estimation of β, setting the comparison of MSPE aside for future
work. For Scenario (A), Figure 6 suggests improvement in estimation of β when the spatial
process itself is smooth (ρ ≥ 0.2), but the β2 parameter estimation is worse when the spatial
process is less smooth than x2. The ratio of the sum of squared deviations to the true value
is roughly 0.75 when ρ < 0.2, but about 1.5 when ρ ≥ 0.2. Values for β̂1 are also reported as
a reference. It appears that as long as the covariates are not varying in a fashion smoother
than the actual spatial process, it is worth including a spline component in the model.
Moreover, the correction of the tuning parameter does improve the estimation of β in
comparison to the GCV, at a rate of about 10%. While this improvement is not enough to
justify including a spline in the case when ρ < 0.2, it does mitigate the spatial confounding.

For scenario (B), the bias effect of the dependence between η(s) and x2(s) is shown
in Figure 7. It is also clear that including a spline in such models is beneficial when the
spatial process is smooth, and at least does not worsen the regression coefficients estimation
otherwise.

In both cases, the performance of the spline based fitting is similar to the restricted
maximum likelihood approach. This is remarkable because using the spline method does
not require the knowledge of the covariance structure of the data.

The choice of spatial confounding-like scenarios presented here is arbitrary. We investi-
gate spatial confounding further by looking at cases for which spatial confounding is present
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Figure 5: Illustration of the trade-off between the two components of Var (β̂j), j = 1, 2, given by Var X(β̂j)

(variance attributed to the design matrix X) and Var η(β̂j) (variance attributed to the spatial process
η(s)). Scenario (A): In this case, η(s) is independent of X but x2(s) is a Gaussian random field with
Matèrn covariance and parameters κ = 2.5, ρ = 0.2. Scenario (B): η(s) is correlated with x2(s) (with a
correlation of 0.4).

at varying degrees of complexity. For example, in Scenario (A), x2(s) is a Gaussian random
field with Matérn covariance function and parameters κ = 2.5, and ζ = 0.2, 0.4, 0.6 and 0.8
for the range parameter. Similarly, for Scenario (B), we have x2(s) and η(s) be correlated,
with correlations ζ = 0.2, 0.4, 0.6 and 0.8.

Since the potential number of parameter combinations in the simulation becomes too
large, we focus on two cases, in which η(s) is a Gaussian random field with with Matérn
covariance function of parameters κ = 2.5, ρ = 0.02 and ρ = 0.5. Figure 8 shows the
estimates of β2 when η(s) has ρ = 0.02, and Figure 9 shows the estimates of β2 when η(s)
has ρ = 0.5. We observe in Figure 8 that when η(s) has a small ρ (weak spatial dependence),
using the spline is detrimental for Scenario (A) and only moderately helpful for Scenario
(B). This suggests that when there is no spatially dependent error, using a thin-plate spline
is just overfitting the data, with no improvement on estimation of β. On the other hand,
when η(s) has a large ρ (strong spatial dependence) we observe in Figure 9 the spline is
very helpful in improving the estimates of β and controlling the spatial confounding effect
for Scenario (B). For Scenario (B) in general, the spline is effictive at controlling the spatial
confounding effect. For Scenario (A) our conjecture of the spline only being helpful as long
as x2(s) have a weaker spatial dependence than η(s); the larger the ζ value is, the worse is
the impact on estimation of β2 for having a spline smoother.
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Figure 6: Scenario (A), in which x2(s) is a Gaussian random field with Matérn covariance function with

parameters κ = 2.5 and ρ = 0.2. Boxplots of β̂ using the standard linear model (LM), the restricted
maximum likelihood model (RM), the semiparametric thin-plate spline model (SP) and the SP model

with λ estimated by the correction algorithm from Section 2.4 (SPc); the color coding indicates β̂1 and

β̂2. The spatial process has a Matérn covariance function with parameters κ = 0.5, 1.5, 2.5 and ρ =
0.02, 0.05, 0.2, 0.5. The horizontal solid line indicates the true value of β.

Finally, we also investigated changes in σ2
η, which lead to different signal-to-noise ratios

for the spatial process η(s). Figure 10 shows the case in which there is spatial confounding
according to Scenarios (A) or (B), and σ2

η is set to 0.1σ2, 0.5σ2, 2σ2, or 10σ2.. We can
observe that for different signal-to-noise ratios in Scenario (A), the semiparametric method
has a comparable performance with the restricted maximum likelihood estimates using the
Matérn covariance. Aside from the increased variability of the β̂ estimates, the results are
consistent with what was previously observed. For Scenario (B), however, we observe that
a higher the signal-to-noise ratio makes the restricted maximum likelihood estimates of β
closer to the semiparameteric estimates.

4.3. Nonstationarity

The simulation study conducted considered only stationary spatial processes η(s). The
semiparametric model, however, does not assume stationarity. We will briefly look at
two cases of nonstationarity, which are based on transformations of the Matérn covariance
function:

• In the case labelled “Anisotropic”, let η∗ be a process with Matérn covariance as
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Figure 7: Scenario (B), in which Corr (η(s), x2(s)) ≈ 0.4. Boxplots of β̂ using the standard linear model
(LM), the restricted maximum likelihood model (RM), the semiparametric thin-plate spline model (SP)
and the SP model with λ estimated by the correction algorithm from Section 2.4 (SPc); the color coding

indicates β̂1 and β̂2. The spatial process has a Matérn covariance function with parameters κ = 0.5, 1.5, 2.5
and ρ = 0.02, 0.05, 0.2, 0.5. The horizontal solid line indicates the true value of β.

described previously, generated on a set of coordinates s∗1, . . . , s
∗
n. Then η is obtained

by rotation and scale of the coordinates, i.e. setting s∗i = Psi for i = 1, . . . , n, while
the values of η∗ are retained (see, e.g. Wackernagel, 2003). In particular, we used
θ = π/4, a = 1, b = 8 in

P =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(√
a 0

0
√
b

)
• In the case labelled “Nonstationary”, we use the Matérn covariance model, but let

the spatial dependence parameter ρ vary in the domain by employing a weighting
function on the coordinates. Thus Cov NS(η(s), η(s′)) = γ(w(s)s, w(s′)s′), and we
chose w(s) = 0.3+(1−0.3)/(1+exp{(s1−0.4)/0.05}), so that the resulting processes
show a transition of spatial dependence on the s1 coordinate.

To illustrate the nonstationary processes, we consider in Figure 11 a diagram similar
to Figure 2, showing the realization of a Gaussian process with the corresponding nonsta-
tionary covariance functions, for different values of spatial dependence ρ.
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Figure 8: Comparison of β̂2 for different spatial confounding degrees of complexity when η(s) is a Gaussian
random field with Matérn covariance of parameters κ = 2.5, ρ = 0.02. For Scenario (A), ζ is the parameter
ρ for generating x2(s); for Scenario (B), ζ is the correlation coefficient between η(s) and x2(s).
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Figure 9: Comparison of β̂2 for different spatial confounding degrees of complexity when η(s) is a Gaussian
random field with Matérn covariance of parameters κ = 2.5, ρ = 0.5. For Scenario (A), ζ is the parameter
ρ for generating x2(s); for Scenario (B), ζ is the correlation coefficient between η(s) and x2(s).
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Figure 10: Comparison of β̂ when σ2
η is set to 0.1σ2, 0.5σ2, 2σ2, or 10σ2. In this case, η(s) is a Matérn

covariance Gaussian process with parameters ν = 2.5, ρ = 0.2.

In Figure 12, we show the distribution of β̂ after simulating η(s) with the anisotropic and
nonstationary transformed covariance functions, based on the Matérn covariance function
with κ = 2.5 and ρ = 0.02, 0.05, 0.2, and 0.5. We observe that the results are similar to the
stationary case.

5. Discussion

We investigated semiparametric spline-based regression when the data comes from spa-
tial processes confounded with fixed covariates. Our conclusion is that including a thin-
plate spline in a regression model for spatially confounded data is helpful, as long as the
resolution of the sampling sites is fine enough to capture spatial variability. On the other
hand, if the spatial process and the covariates are uncorrelated but have similar degrees of
spatial dependence, then using a spline needs careful consideration, since the spline term
might compete with the regression covariate. We also proposed a new strategy for the
selection of the spline tuning parameter in semiparametric regression. We anticipate that
a good selection of the tuning parameter is key to mitigate the spatial confounding effects
on the estimation of the regression coefficients, which we leave for future investigation.
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shows the realization of a single gaussian process. The anisotropic case is a deformation of a Matérn
process with choices of parameters κ = 2.5 and ρ = 0.02, 0.05, 0.2, 0.5. The nonstationary case has a
weighting function applied to the ρ coefficient, so that the dependence range between Y (s) and Y (s∗)
changes depending on whether s1, s

∗
1 > 0.4.
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Figure 12: Comparison of β̂ for the Anisotropic and Nonstationary cases, for Scenarios (A) and (B). This
figure is analogous to Figure 6 and Figure 7.

J. Hughes and M. Haran. Dimension reduction and alleviation of confounding for spatial
generalized linear mixed models. Journal of the Royal Statistical Society: Series B, 75
(1):139–159, 2013.
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