70 research outputs found

    Case Series of an Intraoral Balancing Appliance Therapy on Subjective Symptom Severity and Cervical Spine Alignment

    Get PDF
    Objective. The objective of this study was to investigate the effect of a holistic intraoral appliance (OA) on cervical spine alignment and subjective symptom severity. Design. An observational study on case series with holistic OA therapy. Setting. An outpatient clinic for holistic temporomandibular joint (TMJ) therapy under the supervision of the Pain Center, CHA Biomedical center, CHA University. Subjects. Ambulatory patients presenting with diverse chief complaints in the holistic TMJ clinic. Main Measures. Any immediate change in the curvature of cervical spine and the degree of atlantoaxial rotation was investigated in the images of simple X-ray and computed tomography of cervical spine with or without OA. Changes of subjective symptom severity were also analyzed for the holistic OA therapy cases. Results. A total of 59 cases were reviewed. Alignment of upper cervical spine rotation showed an immediate improvement (). Changes of subjective symptom severity also showed significant improvement (). Conclusion. These cases revealed rudimentary clinical evidence that holistic OA therapy may be related to an alleviated symptom severity and an improved cervical spinal alignment. These results show that further researches may warrant for the holistic TMJ therapy

    Case Series of an Intraoral Balancing Appliance Therapy on Subjective Symptom Severity and Cervical Spine Alignment

    Get PDF
    Objective. The objective of this study was to investigate the effect of a holistic intraoral appliance (OA) on cervical spine alignment and subjective symptom severity. Design. An observational study on case series with holistic OA therapy. Setting. An outpatient clinic for holistic temporomandibular joint (TMJ) therapy under the supervision of the Pain Center, CHA Biomedical center, CHA University. Subjects. Ambulatory patients presenting with diverse chief complaints in the holistic TMJ clinic. Main Measures. Any immediate change in the curvature of cervical spine and the degree of atlantoaxial rotation was investigated in the images of simple X-ray and computed tomography of cervical spine with or without OA. Changes of subjective symptom severity were also analyzed for the holistic OA therapy cases. Results. A total of 59 cases were reviewed. Alignment of upper cervical spine rotation showed an immediate improvement ( < 0.001). Changes of subjective symptom severity also showed significant improvement ( < 0.05). Conclusion. These cases revealed rudimentary clinical evidence that holistic OA therapy may be related to an alleviated symptom severity and an improved cervical spinal alignment. These results show that further researches may warrant for the holistic TMJ therapy

    Detection of betanodaviruses in apparently healthy aquarium fishes and invertebrates

    Get PDF
    Betanodaviruses are the causative agents of viral nervous necrosis (VNN) in cultured marine fish. A total of 237 apparently healthy aquarium fish, marine (65 species) and freshwater (12 species) fishes and marine invertebrates (4 species), which were stocked in a commercial aquarium in Seoul, South Korea, were collected from November 2005 to February 2006. The brains of the fish and other tissues of the invertebrates were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR to detect betanodavirus. Positive nested PCR results were obtained from the brains of 8 marine fish species (shrimp fish Aeoliscus strigatus, milkfish Chanos chanos, three spot damsel Dascyllus trimaculatus, Japanese anchovy Engraulis japonicus, pinecone fish Monocentris japonica, blue ribbon eel Rhinomuraena quaesita, look down fish Selene vomer, yellow tang Zebrasoma flavesenes), 1 marine invertebrate species (spiny lobster Pamulirus versicolor), and 2 freshwater fish species (South American leaf fish Monocirrhus polyacanthus and red piranha Pygocentrus nattereri). The detection rate in nested PCR was 11/237 (4.64%). These subclinically infected aquarium fish and invertebrates may constitute an inoculum source of betanodaviruses for cultured fishes in the Korean Peninsula

    Nogo-A regulates myogenesis via interacting with Filamin-C

    Get PDF
    Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings. © 2021, The Author(s).1

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    A Study on the Development and Growth of the Tibial and Fibular Epiphyses

    No full text

    Injectable Human Hair Keratin–Fibrinogen Hydrogels for Engineering 3D Microenvironments to Accelerate Oral Tissue Regeneration

    No full text
    Traumatic injury of the oral cavity is atypical and often accompanied by uncontrolled bleeding and inflammation. Injectable hydrogels have been considered to be promising candidates for the treatment of oral injuries because of their simple formulation, minimally invasive application technique, and site-specific delivery. Fibrinogen-based hydrogels have been widely explored as effective materials for wound healing in tissue engineering due to their uniqueness. Recently, an injectable foam has taken the spotlight. However, the fibrin component of this biomaterial is relatively stiff. To address these challenges, we created keratin-conjugated fibrinogen (KRT-FIB). This study aimed to develop a novel keratin biomaterial and assess cell–biomaterial interactions. Consequently, a novel injectable KRT-FIB hydrogel was optimized through rheological measurements, and its injection performance, swelling behavior, and surface morphology were investigated. We observed an excellent cell viability, proliferation, and migration/cell–cell interaction, indicating that the novel KRT-FIB-injectable hydrogel is a promising platform for oral tissue regeneration with a high clinical applicability

    Effect of Sn addition on the microstructure and deformation behavior of Mg-3Al alloy

    No full text
    Mg alloys generally suffer from their poor formability at low temperatures due to their strong basal texture and a lack of adequate deformation systems. In the present study, a small amount of Sn was added instead of Zn to Mg-3Al alloy to modify its deformation behavior and improve the stretch formability. Microstructural examinations of the deformed Mg-3Al-1Sn (AT31) alloy by electron back scatter diffraction and transmission electron microscopy show that prismatic slip is quite active during deformation, resulting in much lower r-values and planar anisotropy than the counterpart Mg-3Al-1Zn (AZ31) alloy. Polycrystal plasticity simulation based on visco-plasticity self-consistent (VPSC) model also shows that prismatic slip is the dominant deformation mode in AT31 alloy besides basal slip. As a consequence, AT31 alloy shows a much higher stretch formability than AZ31 alloy. On the other hand, AZ31 alloy shows the development of intense shear bands during stretch forming, and these shear bands act as crack propagating paths, limiting the stretch formability of AZ31 alloy. (c) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.112112sciescopu
    corecore