14,031 research outputs found

    Soft Spin Wave Near nu=1: Evidence for a Magnetic Instability in Skyrmion Systems

    Full text link
    The ground state of the two dimensional electron gas near ν\nu=1 is investigated by inelastic light scattering measurements carried down to very low temperatures. Away from ν\nu=1, the ferromagnetic spin wave collapses and a new low-energy spin wave emerges below the Zeeman gap. The emergent spin wave shows soft behavior as its energy increases with temperature and reaches the Zeeman energy for temperatures above 2 K. The observed softening indicates an instability of the two dimensional electron gas towards a magnetic order that breaks spin rotational symmetry. We discuss our findings in light of the possible existence of a Skyrme crystal.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    On fuzzy BCC-ideals over a t-norm

    Get PDF
    Using a t-norm T, the notion of T-fuzzy BCC-ideals of BCC-algebras is introduced, and some of their properties are investigated. Connections between different types of fuzzy BCC-ideals induced by t-norms are described

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let

    Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

    Full text link
    By varying the density of an ultracold 88^{88}Sr sample from 10910^9 cm3^{-3} to >1012> 10^{12} cm3^{-3}, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0^1S_0 - 3P1^3P_1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88^{88}Sr 1S03P1^1S_0 - ^3P_1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is (434829121312334±20stat±33sys434 829 121 312 334 \pm 20_{stat} \pm 33_{sys}) Hz.Comment: 4 pages, 4 figures, 1 table. submitte

    Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly

    Full text link
    Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczek's method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be described by an infinite collection of the (1+1)--dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)--dimensional black body radiation at the Hawking temperature.Comment: 4 pages, no figure, 3nd revsion with one reference adde

    Netons: Vibrations of Complex Networks

    Full text link
    We consider atoms interacting each other through the topological structure of a complex network and investigate lattice vibrations of the system, the quanta of which we call {\em netons} for convenience. The density of neton levels, obtained numerically, reveals that unlike a local regular lattice, the system develops a gap of a finite width, manifesting extreme rigidity of the network structure at low energies. Two different network models, the small-world network and the scale-free network, are compared: The characteristic structure of the former is described by an additional peak in the level density whereas a power-law tail is observed in the latter, indicating excitability of netons at arbitrarily high energies. The gap width is also found to vanish in the small-world network when the connection range r=1r = 1.Comment: 9 pages, 6 figures, to appear in JP

    Tune-In: Training Under Negative Environments with Interference for Attention Networks Simulating Cocktail Party Effect

    Full text link
    We study the cocktail party problem and propose a novel attention network called Tune-In, abbreviated for training under negative environments with interference. It firstly learns two separate spaces of speaker-knowledge and speech-stimuli based on a shared feature space, where a new block structure is designed as the building block for all spaces, and then cooperatively solves different tasks. Between the two spaces, information is cast towards each other via a novel cross- and dual-attention mechanism, mimicking the bottom-up and top-down processes of a human's cocktail party effect. It turns out that substantially discriminative and generalizable speaker representations can be learnt in severely interfered conditions via our self-supervised training. The experimental results verify this seeming paradox. The learnt speaker embedding has superior discriminative power than a standard speaker verification method; meanwhile, Tune-In achieves remarkably better speech separation performances in terms of SI-SNRi and SDRi consistently in all test modes, and especially at lower memory and computational consumption, than state-of-the-art benchmark systems.Comment: Accepted in AAAI 202

    First Principles Studies on 3-Dimentional Strong Topological Insulators: Bi2Te3, Bi2Se3 and Sb2Te3

    Full text link
    Bi2Se3, Bi2Te3 and Sb2Te3 compounds are recently predicted to be 3-dimentional (3D) strong topological insulators. In this paper, based on ab-initio calculations, we study in detail the topological nature and the surface states of this family compounds. The penetration depth and the spin-resolved Fermi surfaces of the surface states will be analyzed. We will also present an procedure, from which highly accurate effective Hamiltonian can be constructed, based on projected atomic Wannier functions (which keep the symmetries of the systems). Such Hamiltonian can be used to study the semi-infinite systems or slab type supercells efficiently. Finally, we discuss the 3D topological phase transition in Sb2(Te1-xSex)3 alloy system.Comment: 8 pages,17 figure
    corecore