MATHEMATICAL COMMUNICATIONS 5(2000), 149-155

# On fuzzy BCC-ideals over a *t*-norm

Wiesław A. Dudek\* and Young Bae  $\operatorname{Jun}^\dagger$ 

**Abstract**. Using a t-norm T, the notion of T-fuzzy BCC-ideals of BCC-algebras is introduced, and some of their properties are investigated. Connections between different types of fuzzy BCC-ideals induced by t-norms are described.

Key words: T-fuzzy BCC-ideal

AMS subject classifications: 06F35, 03G25, 94D05

Received October 3, 2000

Accepted November 27, 2000

## 1. Introduction

As it is well known many classes of algebras (for example: BCK-algebras, Hilbert algebras, Hertz algebras, Heyting algebras, MV-algebras) may be isomorphically or anti-isomorphically embedded into the class of BCC-algebras. Hence the class of BCC-algebras is important. A special role in the theory of BCC-algebras play ideals of different types and their connections with congruences (cf. [6]) and fuzzy sets (cf. [4]).

Y. B. Jun and K. H. Kim introduced in [7] the notion of fuzzy ideals of BCKalgebras with respect to a given t-norm, and obtained some of their properties. In this paper, we generalize these results to the case of BCC-ideals of BCC-algebras and investigate some of their new properties.

### 2. Preliminaries

In the present paper a binary multiplication will be denoted by juxtaposition. Dots we use only to avoid repetitions of brackets. For example, the formula ((xy)(zy))(xz) = 0 will be written as  $(xy \cdot zy) \cdot xz = 0$ .

A non-empty set G with a constant 0 and a binary operation denoted by juxtaposition is called a *BCC-algebra* if for all  $x, y, z \in G$  the following axioms hold:

<sup>\*</sup>Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: dudek@im.pwr.wroc.pl

<sup>&</sup>lt;sup>†</sup>Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea, e-mail: ybjun@nongae.gsnu.ac.kr

- (i)  $(xy \cdot zy) \cdot xz = 0$ ,
- (ii) xx = 0,
- (iii) 0x = 0,
- (iv) x0 = x,
- (v) xy = 0 and yx = 0 imply x = y.

A BCC-algebra satisfying the identity:

(vi)  $xy \cdot z = xz \cdot y$ 

is a BCK-algebra (cf. [3]).

Note by the way, that a proper BCC-algebra (i.e., a BCC-algebra which is not a BCK-algebra) has at least four elements (cf. [3]). Moreover, there are proper BCC-algebras in which all proper subalgebras are BCK-algebras (cf. [2]).

A non-empty subset I of a BCC-algebra G is called a *BCC-ideal* of G if  $(i) \ 0 \in I$ and  $(ii) \ xy \cdot z, y \in I$  implies  $xz \in I$ . If (ii) holds only in the case when z = 0, i.e., if  $(iii) \ xy, y \in I$  implies  $x \in I$ , then I is called a *BCK-ideal*.

In BCK-algebras BCK-ideals coincides with BCC-ideals, but in BCC-algebras there are BCK-ideals which are not BCC-ideals. Moreover, in BCC-algebras any BCC-ideal is determined by some congruence (cf. [6]).

Now we review some fuzzy concepts. A fuzzy set in a set G is a function  $\mu$ :  $G \to [0,1]$ . For  $\alpha \in [0,1]$ , the set  $U(\mu; \alpha) := \{x \in G \mid \mu(x) \ge \alpha\}$  is called an upper level set of  $\mu$ .

**Definition 1.** By a t-norm, we mean a function  $T : [0,1] \times [0,1] \rightarrow [0,1]$  satisfying the following conditions (cf. [1]):

 $\begin{array}{ll} (T_1) & T(\alpha,1) = \alpha \,, \\ (T_2) & T(\alpha,\beta) \leq T(\alpha,\gamma) \quad whenever \quad \beta \leq \gamma \,, \\ (T_3) & T(\alpha,\beta) = T(\beta,\alpha) \,, \\ (T_4) & T(\alpha,T(\beta,\gamma)) = T(T(\alpha,\beta),\gamma) \end{array}$ 

for all  $\alpha, \beta, \gamma \in [0, 1]$ .

A simple example of such defined t-norm is a function  $T(\alpha, \beta) = \min\{\alpha, \beta\}$ . In the general case  $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$  and  $T(\alpha, 0) = 0$  for all  $\alpha, \beta \in [0, 1]$ . Moreover, ([0, 1]; T) may be considered as a commutative semigroup with 0 as the neutral element. In particular

$$T(T(\alpha,\beta), T(\gamma,\delta)) = T(T(\alpha,\gamma), T(\beta,\delta))$$

holds for all  $\alpha, \beta, \gamma, \delta \in [0, 1]$ .

The set of all idempotents with respect to T, i.e. the set

$$E_T := \{ \alpha \in [0,1] \mid T(\alpha, \alpha) = \alpha \}$$

is a subsemigroup of a semigroup ([0, 1], T). If  $Im(\mu) \subseteq E_T$ , then a fuzzy set  $\mu$  is called an *idempotent with respect to a t-norm T*. (briefly: an *idempotent T-fuzzy* set). In this case  $T(\alpha, \beta) = \min\{\alpha, \beta\}$  for all  $\alpha, \beta \in Im(\mu)$  since  $\alpha \leq \beta$  implies

$$\alpha = T(\alpha, \alpha) \le T(\alpha, \beta) \le \min\{\alpha, \beta\} = \alpha.$$

#### **T-fuzzy BCC-ideals**

In what follows, let G denote a BCC-algebra unless otherwise specified.

**Definition 2.** A fuzzy set  $\mu$  in G is called a fuzzy BCC-ideal of G with respect to a *t*-norm T (*briefly*, a T-fuzzy BCC-ideal) if

 $\begin{array}{ll} (F_1) & \mu(0) \geq \mu(x) \ , \\ (F_2) & \mu(xz) \geq T(\mu(xy \cdot z), \mu(y)) \end{array}$ 

for all  $x, y, z \in G$ .

A fuzzy set  $\mu$  satisfying  $(F_1)$  and

 $(F_3) \quad \mu(x) \ge T(\mu(xy), \, \mu(y))$ 

is called a T-fuzzy BCK-ideal of G.

This means that any T-fuzzy BCC-ideal is a T-fuzzy BCK-ideal, but not conversely as shows the example given below.

**Example 1.** The function  $T_m$  defined by  $T_m(\alpha, \beta) = \max\{\alpha + \beta - 1, 0\}$  for all  $\alpha, \beta \in [0, 1]$  is a t-norm (cf. [10]).

Let  $G = \{0, a, b, c, d\}$  be a BCC-algebra with the following multiplication:

| • | 0 | a | b | c | d |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | 0 | 0 |
| b | b | b | 0 | 0 | 0 |
| c | c | c | a | 0 | 0 |
| d | d | c | d | c | 0 |

By routine calculations, we known that a fuzzy set  $\mu$  in G defined by  $\mu(0) = \mu(a) = 0.9$  and  $\mu(b) = \mu(c) = \mu(d) = 0.3$  is a  $T_m$ -fuzzy BCK-ideal of G, which is not a  $T_m$ -fuzzy BCC-ideal because  $\mu(db) < T_m(\mu(da \cdot b), \mu(a))$ .

**Proposition 1.** In a BCK-algebra every T-fuzzy BCK-ideal is a T-fuzzy BCC-ideal.

**Proof.** Let  $\mu$  be a *T*-fuzzy BCK-ideal of a BCK-algebra *G*, where *T* is a *t*-norm. Since (vi) holds in *G* for all  $x, y, z \in G$ , we have

$$\mu(xz) \ge T(\mu(xz \cdot y), \mu(y)) = T(\mu(xy \cdot z), \mu(y))$$

and so  $\mu$  is a *T*-fuzzy BCC-ideal of *G*.

Remark that in the case  $T(\alpha, \beta) = \min\{\alpha, \beta\}$  our *T*-fuzzy BCC-ideals (BCK-ideals) are fuzzy BCC-ideals (BCK-ideals) described in [4] and [5]. On the other hand, any fuzzy BCC-ideal (BCK-ideal) is a *T*-fuzzy BCC-ideal (BCK-ideal) for every *t*-norm *T* because for  $T(\alpha, \beta) \leq \min\{\alpha, \beta\}$  for every *t*-norm *T*. But there are *T*-fuzzy BCC-ideals which are not fuzzy BCC-ideals.

**Example 2.** Let a BCC-algebra G and a t-norm  $T_m$  be as in the above example. Then a fuzzy set  $\rho$  in G defined by  $\rho(0) = 0.9$ ,  $\rho(a) = \rho(b) = 0.6$ ,  $\rho(c) = \rho(d) = 0.5$ is – as is not difficult to see – a  $T_m$ -fuzzy BCC-ideal, which is not a fuzzy BCC-ideal since  $\rho(c0) < \min\{\rho(cb \cdot 0), \rho(b)\}$ .

This example proves also that a T-fuzzy BCC-ideal is not a fuzzy BCK-ideal in general.

**Proposition 2.** If  $\mu$  is a *T*-fuzzy BCC-ideal of *G*, then  $U(\mu; 1)$  is either empty or a BCC-ideal of *G*.

**Proof.** Assume that  $U(\mu; 1) \neq \emptyset$ . Then there exists  $x \in U(\mu; 1)$ , and so  $\mu(0) \ge \mu(x) = 1$ , i.e.,  $0 \in U(\mu; 1)$ .

Let  $x, y, z \in G$  be such that  $xy \cdot z \in U(\mu; 1)$  and  $y \in U(\mu; 1)$ . Then

$$\mu(xz) \ge T(\mu(xy \cdot z), \, \mu(y)) \ge T(1,1) = 1$$

so that  $xz \in U(\mu; 1)$ . Hence  $U(\mu; 1)$  is a BCC-ideal of G.

Note that in the above example  $U(\rho; 1)$  is empty but  $U(\rho; 0.6) = \{0, a, b\}$  is not a BCC-ideal (BCK-ideal also). If a *T*-fuzzy BCC-ideal (BCK-ideal)  $\mu$  is idempotent, then  $T(\alpha, \beta) = \min\{\alpha, \beta\}$  for all  $\alpha, \beta \in Im(\mu)$ , and in the consequence (cf. [4]), its each non-empty upper level set  $U(\mu; \alpha)$  is a BCC-ideal (BCK-ideal) of the corresponding BCC-algebra. Moreover, from [5] follows that an idempotent *T*-fuzzy BCC-ideal is order reversing.

Let f be a mapping defined on G. If v is a fuzzy set in f(G), then the fuzzy set  $\mu = v \circ f$  in G (i.e., the fuzzy set defined by  $\mu(x) = v(f(x))$  for all  $x \in G$ ) is called the *preimage of* v under f.

**Proposition 3.** Let T be a t-norm and let  $f: G \to G'$  be an onto homomorphism of BCC-algebras, v a T-fuzzy BCC-ideal of G' and  $\mu$  the preimage of v under f. Then  $\mu$  is a T-fuzzy BCC-ideal of G. Moreover, if v is idempotent, then so is  $\mu$ .

**Proof.** For any  $x \in G$ , we get

$$\mu(x) = \upsilon(f(x)) \le \upsilon(0') = \upsilon(f(0)) = \mu(0) \,.$$

Let  $x, z \in G$ . Then

$$\mu(xz) = v(f(xz)) = v(f(x)f(z)) \ge T(v(f(x)y' \cdot f(z)), v(y'))$$

for any  $y' \in G'$ .

Let y be an arbitrary preimage of y' unless f. Then

$$\begin{split} \mu(xz) &\geq T(\upsilon(f(x)y' \cdot f(z)), \upsilon(y')) \\ &= T(\upsilon(f(x)f(y) \cdot f(z)), \upsilon(f(y))) \\ &= T(\upsilon(f(xy \cdot z)), \upsilon(f(y))) \\ &= T(\mu(xy \cdot z), \mu(y)). \end{split}$$

Since y' is arbitrary, the above inequality is true for all  $y \in G$ , i.e.,

$$\mu(xz) \ge T(\mu(xy \cdot z), \, \mu(y))$$

for all  $x, y, z \in G$ , which proves that  $\mu$  is a T-fuzzy BCC-ideal.

Now, if v is idempotent and  $\alpha \in Im(\mu)$ , then  $\alpha = \mu(x) = v(f(x))$  for some  $x \in G$ . Hence  $Im(\mu) \subseteq Im(v) \subseteq E_T$ , and therefore  $\mu$  is an idempotent *T*-fuzzy BCC-ideal.

#### 3. Fuzzy BCC-ideals induced by norms

Now we present some methods of constructions of T-fuzzy BCC-ideals.

**Definition 3.** Let T be a t-norm and let  $\mu$  and  $\nu$  be two fuzzy sets in G. Then the T-product of  $\mu$  and  $\nu$ , denoted by  $[\mu \cdot \nu]_T$ , is defined by

$$[\mu \cdot \nu]_T(x) = T(\mu(x), \nu(x))$$

for all  $x \in G$ .

Obviously  $[\mu \cdot \nu]_T$  is a fuzzy set in G and  $[\mu \cdot \nu]_T = [\nu \cdot \mu]_T$ .

**Theorem 1.** Let T be a t-norm and let  $\mu$  and  $\nu$  be two T-fuzzy BCC-ideals of G. If a t-norm  $T^*$  dominates T, i.e., if

$$T^*(T(\alpha,\gamma),T(\beta,\delta)) \ge T(T^*(\alpha,\beta),T^*(\gamma,\delta))$$

for all  $\alpha, \beta, \gamma, \delta \in [0, 1]$ , then  $T^*$ -product  $[\mu \cdot \nu]_{T^*}$  is a T-fuzzy BCC-ideal of G.

**Proof.** At first observe that

$$[\mu \cdot \nu]_{T^*}(0) = T^*(\mu(0), \nu(0)) \ge T^*(\mu(x), \nu(x)) = [\mu \cdot \nu]_{T^*}(x)$$

for all  $x \in G$ . Similarly, for  $x, y, z \in G$  we have

$$\begin{split} \left[ \mu \cdot \nu \right]_{T^*}(xz) &= T^*(\mu(xz), \nu(xz)) \\ &\geq T^*(T(\mu(xy \cdot z), \mu(y)), T(\nu(xy \cdot z), \nu(y))) \\ &\geq T(T^*(\mu(xy \cdot z), \nu(xy \cdot z)), T^*(\mu(y), \nu(y))) \\ &= T([\mu \cdot \nu]_{T^*}(xy \cdot z), [\mu \cdot \nu]_{T^*}(y)), \end{split}$$

which proves that  $[\mu \cdot \nu]_{T^*}$  is a *T*-fuzzy BCC-ideal of *G*.

**Corollary 1.** The T-product of two T-fuzzy BCC-ideals of G is a T-fuzzy ideal of the same BCC-algebra G.

**Theorem 2.** Let T and  $T^*$  be t-norms in which  $T^*$  dominates T. Let  $f : G \to G'$  be an onto homomorphism of BCC-algebras. For any T-fuzzy BCC-ideals  $\mu$  and  $\nu$  of G', we have

$$f^{-1}([\mu \cdot \nu]_{T^*}) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$$

**Proof.** Let  $x \in G$ . Then

$$\begin{split} [f^{-1}([\mu \cdot \nu]_{T^*})](x) &= [\mu \cdot \nu]_{T^*}(f(x)) = T^*(\mu(f(x)), \nu(f(x))) \\ &= T^*([f^{-1}(\mu)](x), \, [f^{-1}(\nu)](x)) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}(x) \,, \end{split}$$

completing the proof.

**Corollary 2.** If  $f : G \to G'$  is an onto homomorphism of BCC-algebras, then  $f^{-1}([\mu \cdot \nu]_T) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_T$  for any T-fuzzy BCC-ideals  $\mu$  and  $\nu$  of G'.

**Theorem 3.** Let T be a t-norm and let  $G = G_1 \times G_2$  be the direct product of BCCalgebras  $G_1$  and  $G_2$ . If  $\mu_1$  (resp.  $\mu_2$ ) is a T-fuzzy BCC-ideal of  $G_1$  (resp.  $G_2$ ), then  $\mu = \mu_1 \times \mu_2$  is a T-fuzzy BCC-ideal of G defined by

$$\mu(x) = \mu(x_1, x_2) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2))$$

for all  $(x_1, x_2) = x \in G$ .

**Proof.** For any  $x = (x_1, x_2) \in G$  we have

$$\mu(x) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2)) \leq T(\mu_1(0_1), \mu_2(0_2)) = (\mu_1 \times \mu_2)(0_1, 0_2) = \mu(0).$$

Let  $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2) \in G$ . Then

$$\begin{split} \mu(xz) &= (\mu_1 \times \mu_2)((x_1, x_2) (z_1, z_2)) = (\mu_1 \times \mu_2)(x_1 z_1, x_2 z_2) \\ &= T(\mu_1(x_1 z_1), \mu_2(x_2 z_2)) \\ \geq T(T(\mu_1(x_1 y_1 \cdot z_1), \mu_1(y_1)), T(\mu_2(x_2 y_2 \cdot z_2), \mu_2(y_2))) \\ &= T(T(\mu_1(x_1 y_1 \cdot z_1), \mu_2(x_2 y_2 \cdot z_2)), T(\mu_1(y_1), \mu_2(y_2))) \\ &= T((\mu_1 \times \mu_2)(x_1 y_1 \cdot z_1, x_2 y_2 \cdot z_2), (\mu_1 \times \mu_2)(y_1, y_2)) \\ &= T((\mu_1 \times \mu_2)((x_1, x_2) (y_1, y_2) \cdot (z_1, z_2)), (\mu_1 \times \mu_2)(y_1, y_2)) \\ &= T(\mu(xy \cdot z), \mu(y)) \,. \end{split}$$

Hence  $\mu = \mu_1 \times \mu_2$  is a *T*-fuzzy BCC-ideal of *G*.

The relationship between T-fuzzy BCC-ideals  $\mu \times \nu$  and  $[\mu \cdot \nu]_T$  can be viewed via the following diagram



where I = [0, 1] and  $d: G \to G \times G$  is defined by d(x) = (x, x).

It is not difficult to see that  $[\mu \cdot \nu]_T$  is the preimage of  $\mu \times \nu$  under d.

Note by the way, that our T-product of fuzzy sets is different from the product studied by Liu [8] and Sessa [9].

Now we generalize the product of two *T*-fuzzy BCC-ideals to the product of  $n \ge 2$  *T*-fuzzy BCC-ideals. We first need to generalize the domain of *t*-norm *T* to  $\prod_{i=1}^{n} [0, 1]$  as follows:

**Definition 4.** The function  $T_n : \prod_{i=1}^n [0,1] \to [0,1]$  is defined by

$$T_n(\alpha_1, \alpha_2, \dots, \alpha_n) = T(\alpha_i, T_{n-1}(\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_n))$$

for all  $1 \leq i \leq n$ , where  $n \geq 2$ ,  $T_2 = T$  and  $T_1 = id$  (identity).

Using the induction on n, we have the following lemma.

**Lemma 1.** For a t-norm T and every  $\alpha_i, \beta_i \in [0,1]$ , where  $1 \leq i \leq n$  and  $n \geq 2$ , we have

$$T_n(T(\alpha_1,\beta_1),T(\alpha_2,\beta_2),\ldots,T(\alpha_n,\beta_n))$$
  
=  $T(T_n(\alpha_1,\alpha_2,\ldots,\alpha_n),T_n(\beta_1,\beta_2,\ldots,\beta_n))$ 

Basing on this Lemma and Theorem 3. we can prove

**Theorem 4.** Let T be a t-norm and let  $G = \prod_{i=1}^{n} G_i$  be the direct product of BCCalgebras  $\{G_i\}_{i=1}^{n}$ . If  $\mu_i$  is a T-fuzzy BCC-ideal of  $G_i$ , where  $1 \leq i \leq n$ , then  $\mu = \prod_{i=1}^{n} \mu_i$  defined by

$$\mu(x) = (\prod_{i=1}^{n} \mu_i)(x_1, x_2, \dots, x_n) = T_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n))$$

for all  $x = (x_1, x_2, ..., x_n) \in G$ , is a T-fuzzy BCC-ideal of G. Moreover, if all  $\mu_i$  are T-idempotent, then so is  $\mu$ .

#### References

- M. T. ABU OSMAN, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24(1987), 79–86.
- [2] W. A. DUDEK, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20(1992), 129–136.
- [3] W. A. DUDEK, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20(1992), 137–150.
- [4] W. A. DUDEK, Y. B. JUN, Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri 10(1999), 21–30.
- [5] W. A. DUDEK, Y. B. JUN, Z. STOJAKOVIĆ, On fuzzy ideals in BCC-algebras, Fuzzy Sets and Systems, in print.
- [6] W. A. DUDEK, X. H. ZHANG, On ideals and congruences in BCC-algebras, Czechoslovak Math. J. 48(123)(1998), 21–29.
- [7] Y. B. JUN, K. H. KIM, Imaginable fuzzy ideals of BCK-algebras with respect to a t-norm, J. Fuzzy Math., submitted.
- [8] W. J. LIU, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133 – 139.
- S. SESSA, On fuzzy subgroups and fuzzy ideals under triangular norm, Fuzzy Sets and Systems 13(1984), 95–100.
- [10] Y. YU, J. N. MORDESON, S. C. CHENG, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sci., Creighton Univ., Omaha, Nebraska (USA), 1994.