55 research outputs found

    Extensive genomic diversity and selective conservation of virulence determinants in enterohemorrhagic Escherichia coli strains of O157 and non O157 serotypes

    Get PDF
    Background: Enterohemorrhagic Escherichia coli (EHEC) O157 causes severe food-borne illness in humans. The chromosome of O157 consists of 4.1 Mb backbone sequences shared by benign E. coli K-12, and 1.4 Mb O157-specific sequences encoding many virulence determinants, such as Shiga toxin genes (stx genes) and the locus of enterocyte effacement (LEE). Non-O157 EHECs belonging to distinct clonal lineages from O157 also cause similar illness in humans. According to the "parallel" evolution model, they have independently acquired the major virulence determinants, the stx genes and LEE. However, the genomic differences between O157 and non-O157 EHECs have not yet been systematically analyzed. Results: Using microarray and whole genome PCR scanning analyses, we performed a whole genome comparison of 20 EHEC strains of O26, O111, and O103 serotypes with O157. In non-O157 EHEC strains, although genome sizes were similar with or rather larger than O157 and the backbone regions were well conserved, O157-specific regions were very poorly conserved. Around only 20% of the O157- specific genes were fully conserved in each non-O157 serotype. However, the non-O157 EHECs contained a significant number of virulence genes that are found on prophages and plasmids in O157, and also multiple prophages similar to, but significantly divergent from, those in O157. Conclusion: Although O157 and non-O157 EHECs have independently acquired a huge amount of serotype- or strain-specific genes by lateral gene transfer, they share an unexpectedly large number of virulence genes. Independent infections of similar but distinct bacteriophages carrying these virulence determinants are deeply involved in the evolution of O157 and non-O157 EHECs

    Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations

    Get PDF
    Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations

    Inhibitory Activities of Blasticidin S Derivatives on Aflatoxin Production by Aspergillus Flavus

    No full text
    Blasticidin S (BcS) is a protein synthesis inhibitor which shows strong growth inhibitory activity against a number of microorganisms. However, BcS inhibited aflatoxin production by Aspergillus flavus without affecting its growth. In order to obtain information about the structure–activity relationship of BcS as an aflatoxin production inhibitor, BcS derivatives were prepared and their aflatoxin production inhibitory activities were evaluated. Among five derivatives, blasticidin S carboxymethyl ester, deaminohydroxyblasticidin S, and pyrimidinoblasticidin S showed inhibitory activity, while the others did not. The IC50 value for aflatoxin production of the carboxymethyl ester derivative was one-fifth of that of BcS although their antimicrobial activities were almost the same. These results indicate that the inhibitory activity of BcS against aflatoxin production was enhanced by esterification of its carboxyl group and that the carboxymethyl ester derivative might be more suitable for practical use than BcS because of the specificity of the carboxymethyl ester derivative, which inhibited aflatoxin production more than BcS

    Identification of Vibrio parahaemolyticus Pandemic Group-Specific DNA Sequence by Genomic Subtraction

    Get PDF
    A genomic subtraction between a pandemic Vibrio parahaemolyticus and a nonpandemic strain that seemed to be clonally related was performed. A subtractive DNA fragment was identified to be a part of a 16-kbp insertion sequence which was present in almost all pandemic strains but not in nonpandemic strains tested
    corecore