223 research outputs found

    In-situ spectroscopy and two-color thermography during microwave irradiation in materials processing

    Full text link
    [EN] Concentration of microwave E-field between material particles is considered to cause the enhancement of sintering1 and chemical reaction under microwave irradiation. For example, it is usually required 1700 °C to synthesize AlN by carbothermal reduction method using Al2O3 as a starting material, but microwave processing can proceed this process at 1200 °C2. To understand this phenomenon, it is necessary to understand an occurrence behavior of plasma and a chemical reaction related to radical species generated by a local E-field concentration. In addition, in material synthesis using a raw material powder of several mm, it is suggested that a selective heating in the powder scale occurs. However, to discuss this selective heating behavior on this scale, it is necessary to realize a quantitative temperature measurement system with independent of the emissivity of the material and several mm spatial resolution. In this study, we conducted an in-situ spectroscopy and two-color thermography to verify these non-equilibrium effects during microwave irradiation. For example, in the iron making process, it was investigated that CN plasma was generated, and this CN radical contributed to the reduction reaction (Fig. 1(a))3. In addition, the developed two-dimensional two-color thermography system with a high resolution of 8.8 mm/pixel was enable to discuss local temperature gradients quantitatively (Fig. 1(b)).This work was supported by a JSPS Grant-in-Aid for Scientific Research (S) No. JP17H06156.Fukushima, J.; Takizawa, H. (2019). In-situ spectroscopy and two-color thermography during microwave irradiation in materials processing. En AMPERE 2019. 17th International Conference on Microwave and High Frequency Heating. Editorial Universitat Politècnica de València. 373-377. https://doi.org/10.4995/AMPERE2019.2019.9882OCS37337

    Japanese Physicist Makita Goto and Simple Experiments

    Get PDF

    Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene.

    Get PDF
    The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8(+) T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3-4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8(+)/WT1 tetramer(+) T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3-4 weeks of culture and CD8(+)/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8(+) T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8(+) T cell culture. These CD8(+) T cells co-cultured with caTLR4-PMDC11 cells were demonstrated to secrete IFN-γ and to be cytotoxic to WT1-expressing target cells. These data suggested that the antigen-specific cytotoxic T lymphocyte (CTL)-inducing ability of PMDC11 was potentiated via transduction of the caTLR4 gene. The present study also suggested that caTLR4-PMDC11 cells may be applied as potent antigen-presenting cells for generating antigen-specific CTLs in adoptive cellular immunotherapy against tumors and severe viral infections

    The role of virtual-assisted lung mapping 2.0 combining microcoils and dye marks in deep lung resection

    Get PDF
    Objectives: Virtual-assisted lung mapping 2.0 is a novel preoperative bronchoscopic lung mapping technique combining the multiple dye marks of conventional virtual-assisted lung mapping with intrabronchial microcoils to navigate thoracoscopic deep lung resection. This study's purpose was to evaluate the feasibility of virtual-assisted lung mapping 2.0 in resecting deeply located pulmonary nodules with adequate margins. Methods: A multicenter, prospective single-arm study was performed from 2019 to 2020 in 8 institutions. The selection criteria were barely identifiable nodules requiring sublobar lung resections, nodules requiring resection lines reaching the inner 2/3 of the pulmonary lobe on computed tomography images in wedge resection, or the nodule center located in the inner 2/3 of the pulmonary lobe in wedge resection or segmentectomy. Resection margins larger than 2 cm or the nodule diameter were considered successful resection. Bronchoscopic placement of multiple dye marks and microcoil(s) was conducted 0 to 2 days before surgery. Results: We analyzed 65 lesions in 64 patients. The diameter and depth of the targeted nodules and the minimum required resection depth reported as median (interquartile range) were 9 (7-13) mm, 11 (5-15) mm, and 30 (25-35) mm, respectively. Among 60 wedge resections and 5 segmentectomies, successful resection was achieved in 64 of 65 resections (98.5%; 95% confidence interval, 91.7-100). Among 75 microcoils placed, 3 showed major displacement after bronchoscopic placement. There were no severe adverse events associated with the virtual-assisted lung mapping procedure. Conclusions: This study demonstrated that virtual-assisted lung mapping 2.0 can facilitate successful resections for deep pulmonary nodules, overcoming the limitations of conventional virtual-assisted lung mapping

    Antitumor Effect of Sclerostin against Osteosarcoma

    Get PDF
    Various risk factors and causative genes of osteosarcoma have been reported in the literature; however, its etiology remains largely unknown. Bone formation is a shared phenomenon in all types of osteosarcomas, and sclerostin is an extracellular soluble factor secreted by osteocytes that prevents bone formation by inhibiting the Wnt signaling pathway. We aimed to investigate the antitumor effect of sclerostin against osteosarcoma. Osteosarcoma model mice were prepared by transplantation into the dorsal region of C3H/He and BALB/c-nu/nu mice using osteosarcoma cell lines LM8 (murine) and 143B (human), respectively. Cell proliferations were evaluated by using alamarBlue and scratch assays. The migratory ability of the cells was evaluated using a migration assay. Sclerostin was injected intraperitoneally for 7 days to examine the suppression of tumor size and extension of survival. The administration of sclerostin to osteosarcoma cells significantly inhibited the growth and migratory ability of osteosarcoma cells. Kaplan–Meier curves and survival data demonstrated that sclerostin significantly inhibited tumor growth and improved survival. Sclerostin suppressed the proliferative capacity and migratory ability of osteosarcoma cells. Osteosarcoma model mice inhibited tumor growth and prolonged survival periods by the administration of sclerostin. The effect of existing anticancer drugs such as doxorubicin should be investigated for future clinical applications.ArticleCancers 13(23) : 6015(2021)journal articl

    Preoperative CT-guided ICG injection locating SPNs

    Get PDF
    Background: Localization of small pulmonary nodules (SPNs) is challenging in minimally invasive pulmonary resection, and it is unknown whether computer tomography (CT) guided by indocyanine green (ICG) can provide accurate localization with minimal complications. Methods: We performed a retrospective study of patients who underwent thoracoscopic resection of pulmonary nodules after CT-guided preoperative localization with ICG from May 2019 to May 2020. Demographics, procedural data, postoperative complications, and pathologic information, were collected, and an analysis of the accuracy and complications after surgery was conducted. Results: In 471 patients, there was a total of 512 peripheral pulmonary nodules that were ≤2 cm in size. The average time for CT-guided percutaneous ICG injection for localization was 18 minutes, and 98.4% (504/512) of the nodules were successfully localized. The average size of the nodules was 9.1 mm, and the average depth from the pleural surface was 8.9 mm. Overall, 5.9% (28/471) of the patients had asymptomatic pneumothorax after localization, but none needed a tube thoracostomy. All the nodules were resected using video-assisted thoracoscopy technique. Conclusions: Preoperative CT-guided transthoracic ICG injection is safe and feasible for localization of small lung nodules for minimally invasive pulmonary resection. This technique should be considered for preoperative CT-guided localization of small lung nodules
    corecore