1,427 research outputs found

    Excitonic emissions observed in ZnO single crystal nanorods

    Get PDF
    We report on the photoluminescent characteristics of ZnO single crystal nanorods grown by catalyst-free metalorganic vapor phase epitaxy. From photoluminescence (PL) spectra of the nanorods at 10 K, several PL peaks were observed at 3.376, 3.364, 3.360, and 3.359 eV. The PL peak at 3.376 eV is attributed to a free exciton peak while the other peaks are ascribed to neutral donor bound exciton peaks. The observation of the free exciton peak at 10 K indicates that ZnO nanorods prepared by the catalyst-free method are of high optical quality. (C) 2003 American Institute of Physics.open11374393sciescopu

    A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex

    Get PDF
    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in "at home" solutions remineralize the tubules inside by concentrating saliva ingredients. An "in-office" option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid-iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity.111310Ysciescopu

    Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Get PDF
    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner

    Both Size and GC-Content of Minimal Introns Are Selected in Human Populations

    Get PDF
    Background: We previously have studied the insertion and deletion polymorphism by sequencing no more than one hundred introns in a mixed human population and found that the minimal introns tended to maintain length at an optimal size. Here we analyzed re-sequenced 179 individual genomes (from African, European, and Asian populations) from the data released by the 1000 Genome Project to study the size dynamics of minimal introns. Principal Findings: We not only confirmed that minimal introns in human populations are selected but also found two major effects in minimal intron evolution: (i) Size-effect: minimal introns longer than an optimal size (87 nt) tend to have a higher ratio of deletion to insertion than those that are shorter than the optimal size; (ii) GC-effect: minimal introns with lower GC content tend to be more frequently deleted than those with higher GC content. The GC-effect results in a higher GC content in minimal introns than their flanking exons as opposed to larger introns ($125 nt) that always have a lower GC content than that of their flanking exons. We also observed that the two effects are distinguishable but not completely separable within and between populations. Conclusions: We validated the unique mutation dynamics of minimal introns in keeping their near-optimal size and GC content, and our observations suggest potentially important functions of human minimal introns in transcript processin

    Increasing uptake of colorectal cancer screening in Korea: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) screening rates are low in most Asian countries and remain largely unknown. This study examined trends in CRC screening rates after the introduction of the Korean National Cancer Screening Programme (NCSP) and determined the factors associated with uptake of CRC screening by test modality over time.</p> <p>Methods</p> <p>An annual population-based survey conducted through nationally representative random sampling from 2005-2008. In total, 3,699 participants from the 2005-2008 surveys were selected as study subjects. Face-to-face interviews were performed to assess the utilization rate of CRC screening by each screening modality.</p> <p>Results</p> <p>Overall, CRC screening within the recommended time interval increased significantly from 22.9% in 2005 to 36.6% in 2008 (<it>p </it>< 0.001). The proportion of subjects receiving a fecal occult blood test (FOBT) test within the previous year increased significantly from 7.2% in 2005 to 21.3% in 2008 (<it>p </it>< 0.001). Increases in FOBT testing were highest among those who had a lower income status (relative difference = 511.9%) and women (relative difference = 266.1%). Endoscopy use also increased from 18.0% in 2005 to 20.5% in 2008, albeit not significant. Overall, those who were male, non-smokers, 60-69 years old, and had a higher income status were more likely to have undergone up-to-date endoscopy and CRC screening.</p> <p>Conclusions</p> <p>This study revealed a substantial increase in up-to-date CRC screening in the general population from 2005 to 2008. However, more than half of adults in Korea are still not up-to-date with their CRC tests. It will be important to continue to investigate factors associated with up-to-date CRC screening by each modality.</p

    Solitary neurofibroma of the gingiva with prominent differentiation of Meissner bodies : a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oral neurofibromas are peripheral nerve sheath tumors, similar to schwannomas. Histological variations in oral neurofibromas are relatively uncommon.</p> <p>Case presentation</p> <p>Here, we present a case of unique variation in the observed characteristics of a neurofibroma, with no relation to neurofibromatosis type-1 or von Recklinghausen disease of the skin. The neurofibroma was observed in the right mandibular gingiva of a 32-year-old Japanese woman. Histologically, it differed from conventional neurofibromas in that the tumor was composed of a mixture of fine fibrillary collagen in sheets and/or cords of neoplastic Schwann cells containing numerous clusters of Meissner bodies. Histologically, these bodies were in contact with neoplastic Schwann cells. The Meissner bodies were immunopositive for S-100 protein, neuron-specific enolase, and vimentin, but were negative for calretinin. CD34-positive spindle cells were observed around the Meissner bodies. No recurrence or signs of other tumors have been observed in the patient for 5 years after tumor resection.</p> <p>Conclusion</p> <p>To the best of our knowledge, no formal descriptions of sporadic, solitary neurofibromas containing numerous Meissner bodies occurring in the oral cavity are available in literature. We believe that an uncommon proliferation of Meissner bodies, as seen in the present case, may result from aberrant differentiation of neoplastic Schwann cells.</p

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P &lt; 0.0001), lower modularity (P &lt; 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure
    corecore