2,020 research outputs found

    Synergistic effects of ginsenoside Rg3 and cyclophosphamine on tumor growth and angiogenesis in lung cancer

    Get PDF
    To evaluate the effectiveness of ginsenoside Rg3 alone or in combination with cyclophosphamide (CPA) on tumor growth and angiogenesis in human lung cancer, 54 female athymic mice were transplanted with lung cancer cells (A549) which then were randomly divided into 4 groups: Ginsenoside Rg3 group, CPA group, ginsenoside Rg3 plus CPA group and control group. Ginsenoside Rg3 of 3.0 mg/kg (once/day for 10 days) and CPA of 20.0 mg/kg (once/day for 10 days) were intraperitoneally given to mice for consecutive 10 days. Seven mice selected from each group were sacrificed 18 days later. The survival time of the remaining 7 mice in each group was recorded. The life elongation rate, proliferating cell nuclear antigen labeling index (PCNALI), expression of vascular endothelial cell growth factor (VEGF) and microvessel density (MVD) in the tumor tissues were evaluated. The quality of life of mice with administration of ginsenoside Rg3 alone or ginsenoside Rg3 plus CPA were better with longer survival time, when compared with other groups. The PCNALI, MVD and VEGF expression in mice of the treated groups were significantly lowered when compared with that of the control group. Additionally, the MVD of mice in groups with treatment of ginsenoside Rg3 alone or ginsenoside Rg3 plus CPA were lower than that in the CPA group. Tumor growth and angiogenesis in lung cancer were profoundly inhibited by ginsenoside Rg3 alone or in combination with CPA. The synergistic anticancer effects of ginsenoside Rg3 and CPA improved the survival time in lung cancer.Key words: Ginseng, cyclophosphamide, angiogenesis, lung cancer

    Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota

    Get PDF
    The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequencies > 20 kHz), and electrophysiological experiments have demonstrated that neurons in the frog’s midbrain (torus semicircularis) respond to frequencies up to 34 kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species

    Clinical and molecular features of an infant patient affected by Leigh Disease associated to m.14459G > A mitochondrial DNA mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leigh Syndrome (LS) is a severe neurodegenerative disorder characterized by bilateral symmetrical necrotic lesions in the basal ganglia and brainstem. Onset is in early infancy and prognosis is poor. Causative mutations have been disclosed in mitochondrial DNA and nuclear genes affecting respiratory chain subunits and assembly factors.</p> <p>Case presentation</p> <p>Here we report the clinical and molecular features of a 15-month-old female LS patient. Direct sequencing of her muscle-derived mtDNA revealed the presence of two apparently homoplasmic variants: the novel m.14792C > G and the already known m.14459G > A resulting in p.His16Asp change in cytochrome b (MT-CYB) and p.Ala72Val substitution in ND6 subunit, respectively. The m.14459G > A was heteroplasmic in the mother's blood-derived DNA.</p> <p>Conclusions</p> <p>The m.14459G > A might lead to LS, complicated LS or Leber Optic Hereditary Neuropathy. A comprehensive re-evaluation of previously described 14459G > A-mutated patients does not explain this large clinical heterogeneity.</p

    Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA

    Get PDF
    Backgrouud. Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. Methodology. Our Genomic DNA Splicing technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. Conclusions. The Genomic DNA Splicing protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours, Since genamic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully doned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons. © 2007 An et al.published_or_final_versio

    Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    Get PDF
    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain

    Predominant sarcomatoid carcinoma of the lung concurrent with jejunal metastasis and leukocytosis

    Get PDF
    Sarcomatoid carcinoma is an extremely rare biphasic tumor characterized by a combination of malignant epithelial and mesenchymal cells. Limited data on sarcomatoid carcinoma showed that most cases occurred with advanced local disease and metastasis, and paraneoplastic syndromes were rare. We present the case of a 63-year-old man with lung sarcomatoid carcinoma associated with jejunum metastasis and leukocytosis, and its clinical, macroscopic, and histopathological features. This case emphasizes the importance of recognizing paraneoplastic syndromes and metastasis of sarcomatoid carcinoma at diagnosis

    A Discrete Event Simulation model to evaluate the treatment pathways of patients with Cataract in the United Kingdom

    Get PDF
    Background The number of people affected by cataract in the United Kingdom (UK) is growing rapidly due to ageing population. As the only way to treat cataract is through surgery, there is a high demand for this type of surgery and figures indicate that it is the most performed type of surgery in the UK. The National Health Service (NHS), which provides free of charge care in the UK, is under huge financial pressure due to budget austerity in the last decade. As the number of people affected by the disease is expected to grow significantly in coming years, the aim of this study is to evaluate whether the introduction of new processes and medical technologies will enable cataract services to cope with the demand within the NHS funding constraints. Methods We developed a Discrete Event Simulation model representing the cataract services pathways at Leicester Royal Infirmary Hospital. The model was inputted with data from national and local sources as well as from a surgery demand forecasting model developed in the study. The model was verified and validated with the participation of the cataract services clinical and management teams. Results Four scenarios involving increased number of surgeries per half-day surgery theatre slot were simulated. Results indicate that the total number of surgeries per year could be increased by 40% at no extra cost. However, the rate of improvement decreases for increased number of surgeries per half-day surgery theatre slot due to a higher number of cancelled surgeries. Productivity is expected to improve as the total number of doctors and nurses hours will increase by 5 and 12% respectively. However, non-human resources such as pre-surgery rooms and post-surgery recovery chairs are under-utilized across all scenarios. Conclusions Using new processes and medical technologies for cataract surgery is a promising way to deal with the expected higher demand especially as this could be achieved with limited impact on costs. Non-human resources capacity need to be evenly levelled across the surgery pathway to improve their utilisation. The performance of cataract services could be improved by better communication with and proactive management of patients.Peer reviewedFinal Published versio

    In Vivo Serial MR Imaging of Magnetically Labeled Endothelial Progenitor Cells Homing to the Endothelium Injured Artery in Mice

    Get PDF
    Background: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs) play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. Methodology/Principal Findings: The left carotid common artery (LCCA) was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs). EPCs labeling was carried out in vitro using Fe2O3-poly-L-lysine (Fe2O3-PLL). In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T2WI. Larger MR signal voids of vessel wall on T2WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015). Quantitative analyses of vessel wall areas on T2WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p,0.05). Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. Conclusions/Significance: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPC

    Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny

    Get PDF
    Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause cardiomyopathy and heart failure. Owing to a high mutation rate, mtDNA defects may occur at any nucleotide in its 16 569 bp sequence. Complete mtDNA sequencing may detect pathogenic mutations, which can be difficult to interpret because of normal ethnic/geographic-associated haplogroup variation. Our goal is to show how to identify candidate mtDNA mutations by sorting out polymorphisms using readily available online tools. The purpose of this approach is to help investigators in prioritizing mtDNA variants for functional analysis to establish pathogenicity. We analyzed complete mtDNA sequences from 29 Italian patients with mitochondrial cardiomyopathy or suspected disease. Using MITOMASTER and PhyloTree, we characterized 593 substitution variants by haplogroup and allele frequencies to identify all novel, non-haplogroup-associated variants. MITOMASTER permitted determination of each variant's location, amino acid change and evolutionary conservation. We found that 98% of variants were common or rare, haplogroup-associated variants, and thus unlikely to be primary cause in 80% of cases. Six variants were novel, non-haplogroup variants and thus possible contributors to disease etiology. Two with the greatest pathogenic potential were heteroplasmic, nonsynonymous variants: m.15132T>C in MT-CYB for a patient with hypertrophic dilated cardiomyopathy and m.6570G>T in MT-CO1 for a patient with myopathy. In summary, we have used our automated information system, MITOMASTER, to make a preliminary distinction between normal mtDNA variation and pathogenic mutations in patient samples; this fast and easy approach allowed us to select the variants for traditional analysis to establish pathogenicity
    corecore