9,273 research outputs found

    Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model

    Full text link
    As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how the branch of tourism studies can better adapt to the development of the tourism industry. The research findings indicate that the BP model can be applied to the predictions of the scope of the tourism discipline and provide a quantitative basis for decision making with regard to the spatial layout and optimal allocation of the tourism discipline

    Channel Estimation, Equalization and Phase Correction for Single Carrier Underwater Acoustic Communications

    Get PDF
    In this paper, we employ a time-domain channel estimation, equalization and phase correction scheme for single carrier single input multiple output (SIMO) underwater acoustic communications. In this scheme, Doppler shift, which is caused by relative motion between transducer (source) and hydrophones (receiver), is estimated and compensated in the received baseband signals. Then the channel is estimated using a small training block at the front of a transmitted data package, in which the data is artificially partitioned into consecutive data blocks. The estimated channel is utilized to equalize a block of received data, then the equalized data is processed by a group-wise phase correction before data detection. At the end of the detected data block, a small portion of the detected data is utilized to update channel estimation, and the re-estimated channel is employed for channel equalization for next data block. This block-wise channel estimation, equalization and phase correction process is repeated until the entire data package is processed. The receiver scheme is tested with experimental data measured at Saint Margaret\u27s Bay, Nova Scotia, Canada, in May 2006. The results show that it can be applied not only to the scenario of fixed source to fixed receiver, but also to the moving source to fixed receiver case. The achievable uncoded bit error rate (BER) is on the order of 10-4 for moving-to-fixed transmissions, and on the order of 10-5 for fixed-to-fixed transmissions

    Structural Characteristics of Carbon Nanofibers for On-chip Interconnect Applications

    Get PDF
    In this letter, we compare the structures of plasma-enhanced chemical vapor deposition of Ni-catalyzed and Pd-catalyzed carbon nanofibers (CNFs) synthesized for on-chip interconnect applications with scanning transmission electron microscopy (STEM). The Ni-catalyzed CNF has a conventional fiberlike structure and many graphitic layers that are almost parallel to the substrate at the CNF base. In contrast, the Pd-catalyzed CNF has a multiwall nanotubelike structure on the sidewall spanning the entire CNF. The microstructure observed in the Pd-catalyzed fibers at the CNF-metal interface has the potential to lower contact resistance significantly, as our electrical measurements using current-sensing atomic force microscopy indicate. A structural model is presented based on STEM image analysis

    General theory of decoy-state quantum cryptography with source errors

    Full text link
    The existing theory of decoy-state quantum cryptography assumes the exact control of each states from Alice's source. Such exact control is impossible in practice. We develop the theory of decoy-state method so that it is unconditionally secure even there are state errors of sources, if the range of a few parameters in the states are known. This theory simplifies the practical implementation of the decoy-state quantum key distribution because the unconditional security can be achieved with a slightly shortened final key, even though the small errors of pulses are not corrected.Comment: Our results can be used securely for any source of diagonal states, including the Plug-&-Play protocol with whatever error pattern, if we know the ranges of errors of a few parameter

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let
    corecore