27 research outputs found

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    Whole genome sequence and analysis of the Marwari horse breed and its genetic origin

    Get PDF
    Background: The horse (Equus ferus caballus) is one of the earliest domesticated species and has played an important role in the development of human societies over the past 5,000 years. In this study, we characterized the genome of the Marwari horse, a rare breed with unique phenotypic characteristics, including inwardly turned ear tips. It is thought to have originated from the crossbreeding of local Indian ponies with Arabian horses beginning in the 12th century. Results: We generated 101 Gb (similar to 30 x coverage) of whole genome sequences from a Marwari horse using the Illumina HiSeq2000 sequencer. The sequences were mapped to the horse reference genome at a mapping rate of similar to 98% and with similar to 95% of the genome having at least 10 x coverage. A total of 5.9 million single nucleotide variations, 0.6 million small insertions or deletions, and 2,569 copy number variation blocks were identified. We confirmed a strong Arabian and Mongolian component in the Marwari genome. Novel variants from the Marwari sequences were annotated, and were found to be enriched in olfactory functions. Additionally, we suggest a potential functional genetic variant in the TSHZ1 gene (p.Ala344>Val) associated with the inward-turning ear tip shape of the Marwari horses. Conclusions: Here, we present an analysis of the Marwari horse genome. This is the first genomic data for an Asian breed, and is an invaluable resource for future studies of genetic variation associated with phenotypes and diseases in horses.open1

    Whole genome sequencing of an ethnic Pathan (Pakhtun) from the north-west of Pakistan.

    Get PDF
    BACKGROUND: Pakistan covers a key geographic area in human history, being both part of the Indus River region that acted as one of the cradles of civilization and as a link between Western Eurasia and Eastern Asia. This region is inhabited by a number of distinct ethnic groups, the largest being the Punjabi, Pathan (Pakhtuns), Sindhi, and Baloch. RESULTS: We analyzed the first ethnic male Pathan genome by sequencing it to 29.7-fold coverage using the Illumina HiSeq2000 platform. A total of 3.8 million single nucleotide variations (SNVs) and 0.5 million small indels were identified by comparing with the human reference genome. Among the SNVs, 129,441 were novel, and 10,315 nonsynonymous SNVs were found in 5,344 genes. SNVs were annotated for health consequences and high risk diseases, as well as possible influences on drug efficacy. We confirmed that the Pathan genome presented here is representative of this ethnic group by comparing it to a panel of Central Asians from the HGDP-CEPH panels typed for ~650 k SNPs. The mtDNA (H2) and Y haplogroup (L1) of this individual were also typical of his geographic region of origin. Finally, we reconstruct the demographic history by PSMC, which highlights a recent increase in effective population size compatible with admixture between European and Asian lineages expected in this geographic region. CONCLUSIONS: We present a whole-genome sequence and analyses of an ethnic Pathan from the north-west province of Pakistan. It is a useful resource to understand genetic variation and human migration across the whole Asian continent

    Myotis rufoniger genome sequence and analyses: M-rufoniger's genomic feature and the decreasing effective population size of Myotis bats

    Get PDF
    Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66x fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10x coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has batspecific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since similar to 30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity

    The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures

    Get PDF
    Background: The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. Results: We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. Conclusions: We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vulturesopen

    Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.

    Get PDF
    BACKGROUND: There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. RESULTS: We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. CONCLUSIONS: Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research

    Measuring N-acetylaspartate synthesis in vivo using proton magnetic resonance spectroscopy

    Get PDF
     Analisis survival adalah sekumpulan aturan atau prosedur dalam ilmu statistika untuk menganalisis data dengan memperhatikan variabel waktu dimulai dari berlangsungnya suatu kejadian sampai akhir kejadian. Dalam penelitian ini analisis survival digunakan untuk menganalisis fungsi survival eksponensial dengan parameter yang telah diestimasi menggunakan Pendekatan Bayesian SELF dengan prior gamma. Selanjutnya, model survival yang telah diestimasi digunakan dalam model Actuarial Present Value (APV)  asuransi dwiguna. Pada penelitian ini digunakan premi tunggal bersih yaitu jenis premi asuransi yang tidak memperhatikan faktor biaya (anuitas). Tujuan Penelitian ini adalah  menentukan premi tunggal bersih dwiguna k-tahun untuk seseorang yang berusia dari 1 sampai 55 tahun dengan jumlah sampel sebanyak 55 orang, dalam jangka 10 tahun, 15 tahun dan 20 tahun. Berdasarkan hasil perhitungan didapatkan bahwa harga premi untuk seseorang yang berusia 1 sampai 55 tahun, berjangka 10 tahun  sebesar Rp. 61.551.502,7 , berjangka 15 tahun adalah Rp.51.490.493,06 dan berjangka 20 tahun adalah Rp. 45.394.374,22. Sehingga disimpulkan semakin lama jangka pembayaran semakin murah harga premi yang dibayarkan. Kata Kunci :Prior, Actuarial Present Value, estimasi model.  Kata Kunci :Prior, Actuarial Present Value, estimasi model.

    Sequencing and analysis of the whole genome of Indian Gujarati male

    No full text
    The article presents the analysis of whole genome sequence of a Gujarati Indian individual (IHGP01) that was sequenced at 23.05 x coverage with a total of 74.93 Gb of sequence data generated using Illumina HiSeq 2000 platform. Variant analysis revealed over 3.9 million single nucleotide variants (SNVs) and about 393,000 small insertions and deletions (InDels) including novel variants. The known variants were analyzed for their health and disease relevance and pharmacogenomic profile. Mitochondrial and Y-chromosome haplogroup analysis clearly indicated arrival on the continent not more than 20,000-25,000 years ago, following the route out of Africa to central Europe, then into Asian continent and subsequent migration to West part of the Indian subcontinent. The current research has added 141,000 novel genetic variations to the human DNA database. Functional analysis and validation of these novel variations and revelation of their role in health and disease will add a newer dimension to understand people of this subcontinent

    Liquid-Phase Synthesis of Highly Deformable and Air-Stable Sn-Substituted Li3PS4 for All-Solid-State Batteries Fabricated and Operated under Low Pressures

    No full text
    The liquid-phase synthesis (LS) of sulfide solid electrolytes (SEs) has promising potential for mass production of practical all-solid-state Li batteries (ASLBs). However, their accessible SE compositions are mostly metal-free. Moreover, liquid-phase-synthesized-SEs (LS-SEs) suffer from high electronic conductivity due to carbon impurities, resulting in below-par electrochemical performance of ASLBs. Here, the LS of highly deformable and air-stable Li3+xP1-xSnxS4 (0.19 mS cm(-1)) using 1,2-ethylene diamine-1,2-ethanedithiol with tetrahydrofuran is reported. A low heat-treatment temperature (260 degrees C) prevents the carbonization of organic residues. Importantly, a remarkable enhancement in the deformability of LS-SEs compared to that of conventional solid-state-synthesized SEs (SS-SEs) is identified for the first time. LiNi0.7Co0.15Mn0.15O2 electrodes employing LS-SEs in ASLBs significantly outperform those using SS-SEs, notably when assembled under a low fabricating pressure (148 vs 370 MPa, e.g., capacity loss: 2 vs 41 mA h g(-1)) or tested under a low operating pressure (12 or 3 MPa), which is attributed to reduced electrochemo-mechanical effects. Finally, when employing SEs that are exposed to air (dew point of -20 degrees C), LiNi0.7Co0.15Mn0.15O2 electrodes employing SEs with Sn-substituted composition or prepared by LS exhibit significantly better capacity retention than conventional SEs with Sn-free composition or prepared by SS (e.g., 92.2% for LS-Li3.2P0.8Sn0.2S4 vs 32.5% for SS-Li3PS4)
    corecore