213 research outputs found

    Long-lived polymer-supported dimeric Cinchona alkaloid organocatalyst in the asymmetric α-amination of 2-oxindoles

    Get PDF
    Nearly quantitative yields and high enantiomeric purity (89–95% ee) were attained in the course of 100 reaction cycles of a polystyrene resin-supported Cinchona alkaloid organocatalyst in the enantioselective α-amination of 2-oxindoles with diethyl azodicarboxylate. The catalytic material proved stable for >5300 h operation time over 8 months

    Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections

    Get PDF
    The rapid development of antimicrobial resistance is threatening mankind to such an extent that the World Health Organization expects more deaths from infections than from cancer in 2050 if current trends continue. To avoid this scenario, new classes of antiinfectives must urgently be developed. Antibiotics with new modes of action are needed, but other concepts are also currently being pursued. Targeting bacterial virulence as a means of blocking pathogenicity is a promising new strategy for disarming pathogens. Furthermore, it is believed that this new approach is less susceptible towards resistance development. In this review, recent examples of anti-infective compounds acting on several types of bacterial targets, e.g., adhesins, toxins and bacterial communication, are described

    SUPPORTED LIGANDS AND ORGANOCATALYSTS FOR ENANTIOSELECTIVE TRANSFORMATIONS: A PRACTICAL FEASIBILITY PERSPECTIVE

    Get PDF
    A new approach for the immobilization onto organic insoluble polymers of Cinchona alkaloid derivatives was developed and the resulting insoluble polymer-bound (IPB) systems were used as enantioselective organocatalysts in different metal-free asymmetric transformations. Landmarks of this work were the scalable preparation of the IPB derivatives, the attainment of excellent catalytic performance (up to 97% ee) in selected enantioselective processes (dimerization of ketenes and a-amination of 2-oxindoles) and extended serviceability (up to 100 reaction cycles and 5300 h reaction time) of the supported catalysts

    Aminopropyl-silica-supported Cu nanoparticles: An efficient catalyst for continuous-flow Huisgen azide-alkyne cycloaddition (CuAAC)

    Get PDF
    Cu nanoparticles prepared by metal vapor synthesis (MVS) were immobilized on 3-aminopropyl-functionalized silica at room temperature. HRTEM analysis of the catalyst showed that the copper nanoparticles are present with mean diameters limited in the range 1.0-4.5 nm. TPR analysis was performed in order to study the oxidation state of the supported copper nanoparticles. The supported catalyst was used both in batch and in a packed-bed reactor for continuous-flow CuAAC reaction. The activation of the copper catalyst by reduction using phenyl hydrazine in continuous-flow conditions was demonstrated. Along with the high catalytic activity (productivity up to 1689 mol/mol), the catalyst can be used several times with negligible Cu leaching in the product (<9 ppm), less than allowed Cu contaminant in pharmaceuticals. The applicability of packed-bed flow reactor was showed by sequentially converting different substrates in their corresponding products using same column

    New Polymer-Supported Mono- and Bis-Cinchona Alkaloid Derivatives: Synthesis and Use in Asymmetric Organocatalyzed Reactions

    Get PDF
    The straightforward synthesis of polystyrene-supported Chinchona alkaloids and their application in the asymmetric dimerization of ketenes is reported. Six different immobilized derivatives, consisting of three dimeric and two monomeric 9-O ethers, were prepared by “click” anchoring of soluble alkaloid precursors on to azidomethyl resins. The resulting insoluble polymer-bound (IPB) organocatalysts were employed for promoting the dimerization of in-situ generated ketenes. After opening of the ketene dimer intermediates with N,O-dimethylhydroxylamine, valuable Weinreb amides were eventually obtained in good yield (up to 81 %) and excellent enantiomeric purity (up to 96 % ee). All of the IPB catalysts could be recycled effectively without significant loss of activity and enantioselectivity. The extension to other asymmetric transformations (meso-anhydride desymmetrization and α-amination of 2-oxindoles) is also briefly discussed

    Ultrafine palladium nanoparticles immobilized into poly(4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki-Heck reaction

    Get PDF
    Ultrafine Pd nanoparticles (dm = 2.3 nm), obtained by metal vapor synthesis technique, were immobilized into a poly(4-vinylpyridine)-based porous monolith by means of a new synthetic approach. The synthesis involves stabilization of Pd nanoparticles with 4-vinylpyridine ligand and their subsequent immobilization into the monolith by radical co-polymerization of the resulting metal-embedding monomer with ethylene glycol dimethacrylate in presence of porogenic agents (i.e. DMF and PEG-400) inside stainless-steel columns (HPLC type). The hybrid monolithic reactors containing highly dispersed Pd nanoparticles were effectively used as catalyst for Mizoroki-Heck cross-coupling reactions carried out under continuous-flow conditions. The devices showed long life-time (>65 h) and very low Pd leaching (<2 ppm)

    Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase

    Get PDF
    We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4–10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors

    Inverting Small Molecule-Protein Recognition by the Fluorine Gauche Effect: Selectivity Regulated by Multiple H→F Bioisosterism

    Get PDF
    Fluorinated motifs have a venerable history in drug discovery, but as C(sp3 )@F-rich 3D scaffolds appear with increasing frequency, the effect of multiple bioisosteric changes on molecular recognition requires elucidation. Herein we demonstrate that installation of a 1,3,5-stereotriad, in the substrate for a commonly used lipase from Pseudomonas fluorescens does not inhibit recognition, but inverts stereoselectivity. This provides facile access to optically active, stereochemically well-defined organofluorine compounds (up to 98% ee). Whilst orthogonal recognition is observed with fluorine, the trend does not hold for the corresponding chlorinated substrates or mixed halogens. This phenomenon can be placed on a structural basis by considering the stereoelectronic gauche effect inherent to F@C@C@X systems (s!s*). Docking reveals that this change in selectivity (H versus F) with a common lipase results from inversion in the orientation of the bound substrate being processed as a consequence of conformation. This contrasts with the stereochemical interpretation of the biogenetic isoprene rule, whereby product divergence from a common starting material is also a consequence of conformation, albeit enforced by two discrete enzymes

    Highly enantioselective catalytic synthesis of chiral pyridines

    Get PDF
    General methods to prepare chiral pyridine derivatives are greatly sought after due to their significance in medicinal chemistry. Here, we report highly enantioselective catalytic transformations of poorly reactive β-substituted alkenyl pyridines to access a wide range of alkylated chiral pyridines. The simple methodology involves reactivity enhancement via Lewis acid (LA) activation, the use of readily available and highly reactive Grignard reagents, and a copper-chiral diphosphine ligand catalyst. Apart from allowing the introduction of different linear, branched, cyclic, and functionalised alkyl chains at the β-position of alkenyl pyridines, the catalytic system also shows high functional group tolerance

    Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach

    Get PDF
    Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases
    • …
    corecore