6 research outputs found

    Developed high gain microstrip antenna like microphone structure for 5G application

    Get PDF
    We present a new development of microstrip antenna structure combining a simple circular structure with a ring antenna structure as the parasitic element to improve the antenna gain and bandwidth for 5G mobile application. The proposed antenna was fed by a 50ā„¦ microstrip feeding line due to its advantages in performance. The antenna was designed and simulated using a single substrate with double layered copper (top and bottom) with the radiating patch on the top layer and full ground on the bottom layer of the same substrate. Three antennas have been designed namely; design1, design2 and design3 to complete the research works.The antennas ware simulated and optimized at 18 GHz using Computer Simulation Technology (CST) with permittivity, r = 2.2 and thickness, h = 1.57mm on low-loss material Roger RT-Duroid 5880 substrate. The antennas ware reasonably well matched at their corresponding frequency of operations. The simulation and measurement results have shown that the antenna works well. The simulation results have shown that the three antennas works well at the selected frequency. The final simulated antenna for design1, design2 and design3 has been fabricated to measure the performance and also to validate the simulation result with the measurement result. The measurement data for antenna design1, design2 and design3 shows frequency shift of 3% from the simulation result. The final protype of design3 gives 6.6dB gain, -14.51dB return loss, 180MHz bandwidth, and antenna efficiency of 53.9%. All three antennas ware measured using Vector network analyzer (VNA) and Anechoic chamber

    Metal Mountable Ladder Feed Line UHF-RFID Tag Antenna

    Get PDF
    A microstrip dipole UHF-RFID tag antenna that can be mounted on metal object is presented in this paper. The antenna, which has a very simple structure without any shorting pin and shorting plate, is composed of ladder feed line, rectangular loop, capacitive tip-loading and T-match structure. The insertion of ground plane in the tag antenna design reduces the negative impact of metal object to the performance of the tag antenna. The tag is designed to operate in the Malaysia frequency range with the center frequency of 921 MHz. The performance of the tag is evaluated through simulation and measurement in terms of impedance matching, antenna reflection coefficient and tag reading range. The measured reading range obtained when the tag is in free air and on metal object is 2.3 m and 2.2 m respectively

    Development of c-shaped parasitic MIMO antennas for mutual coupling reduction

    Get PDF
    In the 5G system, multiple-input multiple-output (MIMO) antennas for both transmitting and receiving ends are required. However, the design of MIMO antennas at the 5G upper band is challenging due to the mutual coupling issues. Many techniques have been proposed to improve antenna isolation; however, some of the designs have impacts on the antenna performance, especially on the gain and bandwidth reduction, or an increase in the overall size. Thus, a design with a detailed trade-off study must be implemented. This article proposes a new C-shaped parasitic structure around a main circular radiating patch of a MIMO antenna at 16 GHz with enhanced isolation features. The proposed antenna comprises two elements with a separation of 0.32Ī» edge to edge between radiation parts placed in a linear configuration with an overall dimension of 15 mm Ɨ 26 mm. The C-shaped parasitic element was introduced around the main radiating antenna for better isolation. Based on the measurement results, the proposed structure significantly improved the isolation from āˆ’23.86 dB to āˆ’32.32 dB and increased the bandwidth from 1150 MHz to 1400 MHz. For validation, the envelope correlation coefficient (ECC) and the diversity gain (DG) were also measuredas 0.148 dB and 9.89 dB, respectively. Other parameters, such as the radiation pattern, the total average reflection coefficient and the mean effective gain, were also calculated to ensure the validity of the proposed structure. Based on the design work and analysis, the proposed structure was proven to improve the antenna isolation and increase the bandwidth, while maintaining the small overall dimension
    corecore