114 research outputs found

    Runaway electrification of friable self-replicating granular matter

    Get PDF
    We establish that the nonlinear dynamics of collisions between particles favors the charging of a insulating, friable, self-replicating granular material that undergoes nucleation, growth, and fission processes; we demonstrate with a minimal dynamical model that secondary nucleation produces a positive feedback in an electrification mechanism that leads to runaway charging. We discuss ice as an example of such a self-replicating granular material: We confirm with laboratory experiments in which we grow ice from the vapor phase in situ within an environmental scanning electron microscope that charging causes fast-growing and easily breakable palm-like structures to form, which when broken off may form secondary nuclei. We propose that thunderstorms, both terrestrial and on other planets, and lightning in the solar nebula are instances of such runaway charging arising from this nonlinear dynamics in self-replicating granular matter

    Three-frequency resonances in dynamical systems

    Get PDF
    We investigate numerically and experimentally dynamical systems having three interacting frequencies: a discrete mapping (a circle map), an exactly solvable model (a system of coupled ordinary differential equations), and an experimental device (an electronic oscillator). We compare the hierarchies of three-frequency resonances we find in each of these systems. All three show similar qualitative behaviour, suggesting the existence of generic features in the parameter-space organization of three-frequency resonances.Comment: See home page http://lec.ugr.es/~julya

    Crystal growth as an excitable medium

    Get PDF
    Crystal growth has been widely studied for many years, and, since the pioneering work of Burton, Cabrera and Frank, spirals and target patterns on the crystal surface have been understood as forms of tangential crystal growth mediated by defects and by two-dimensional nucleation. Similar spirals and target patterns are ubiquitous in physical systems describable as excitable media. Here, we demonstrate that this is not merely a superficial resemblance, that the physics of crystal growth can be set within the framework of an excitable medium, and that appreciating this correspondence may prove useful to both fields. Apart from solid crystals, we discuss how our model applies to the biomaterial nacre, formed by layer growth of a biological liquid crystal

    Brinicles as a case of inverse chemical gardens

    Get PDF
    Brinicles are hollow tubes of ice from centimetres to metres in length that form under floating sea ice in the polar oceans when dense, cold brine drains downwards from sea ice into sea water close to its freezing point. When this extremely cold brine leaves the ice it freezes the water it comes into contact with; a hollow tube of ice --- a brinicle --- growing downwards around the plume of descending brine. We show that brinicles can be understood as a form of the self-assembled tubular precipitation structures termed chemical gardens, plant-like structures formed on placing together a soluble metal salt, often in the form of a seed crystal, and an aqueous solution of one of many anions, often silicate. On one hand, in the case of classical chemical gardens, an osmotic pressure difference across a semipermeable precipitation membrane that filters solutions by rejecting the solute leads to an inflow of water and to its rupture. The internal solution, generally being lighter than the external solution, flows up through the break, and as it does so a tube grows upwards by precipitation around the jet of internal solution. Such chemical-garden tubes can grow to many centimetres in length. In the case of brinicles, on the other hand, in floating sea ice we have porous ice in a mushy layer that filters out water, by freezing it, and allows concentrated brine through. Again there is an osmotic pressure difference leading to a continuing ingress of sea water in a siphon pump mechanism that is sustained as long as the ice continues to freeze. Since the brine that is pumped out is denser than the sea water, and descends rather rises, a brinicle is a downwards growing tube of ice; an inverse chemical garden

    Exploding Chemical Gardens: A Phase-Change Clock Reaction.

    Get PDF
    Chemical gardens and clock reactions are two of the best-known demonstration reactions in chemistry. Until now these have been separate categories. We have discovered that a chemical garden confined to two dimensions is a clock reaction involving a phase change, so that after a reproducible and controllable induction period it explodes

    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos

    Get PDF
    We present a novel technique, which we term bailout embedding, that can be used to target orbits having particular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea.Comment: 3 figures, 9 subpanel

    Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems

    Get PDF
    We show that, even in the most favorable case, the motion of a small spherical tracer suspended in a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya

    Global Diffusion in a Realistic Three-Dimensional Time-Dependent Nonturbulent Fluid Flow

    Full text link
    We introduce and study the first model of an experimentally realizable three-dimensional time-dependent nonturbulent fluid flow to display the phenomenon of global diffusion of passive-scalar particles at arbitrarily small values of the nonintegrable perturbation. This type of chaotic advection, termed {\it resonance-induced diffusion\/}, is generic for a large class of flows.Comment: 4 pages, uuencoded compressed postscript file, to appear in Phys. Rev. Lett. Also available on the WWW from http://formentor.uib.es/~julyan/, or on paper by reques

    Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    Get PDF
    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility

    Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells

    Full text link
    Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I demonstrate a novel generic mechanism, diversity, that provokes the emergence of global oscillations from individually quiescent elements in heterogeneous excitable media. This mechanism may be operating in the mammalian pancreas, where excitable beta cells, quiescent when isolated, are found to oscillate when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya
    corecore