6 research outputs found

    Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses

    Get PDF
    Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses

    IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites

    Get PDF
    IL-4 receptor (IL-4R)-deficient CD8+ T cells specific for the circumsporozoite protein of Plasmodium yoelii develop a severely impaired memory response after priming with parasites. Memory CD8+ T cells lacking the IL-4R are unable to establish a stable population residing in nonlymphoid organs, although they develop normally in lymphoid organs. Because memory cells from nonlymphoid organs disappear shortly after immunization, the protective antiparasitic activity of this T cell response also is lost. These results demonstrate that IL-4/IL-4R interactions on CD8+ T cells play a critical role in modulating the development and tissue distribution of memory cells induced by parasite immunization. They also indicate that memory cells residing in nonlymphoid tissues are critical for protective immunity against malaria parasites

    The ecology of immune state in a wild mammal, Mus musculus domesticus

    Get PDF
    The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice—the same species as the laboratory mouse—as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals’ immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal

    Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses

    Get PDF
    Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses

    IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.

    No full text
    CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen

    Migration through host cells activates Plasmodium sporozoites for infection.

    No full text
    Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, migrate through several hepatocytes before infecting a final one. Migration through hepatocytes occurs by breaching their plasma membranes, and final infection takes place with the formation of a vacuole around the sporozoite. Once in the liver, sporozoites have already reached their target cells, making migration through hepatocytes prior to infection seem unnecessary. Here we show that this migration is required for infection of hepatocytes. Migration through host cells, but not passive contact with hepatocytes, induces the exocytosis of sporozoite apical organelles, a prerequisite for infection with formation of a vacuole. Sporozoite activation induced by migration through host cells is an essential step of Plasmodium life cycle
    corecore