2,930 research outputs found
Avoiding negative depth in inverse depth bearing-only SLAM
In this paper we consider ways to alleviate negative estimated depth for the inverse depth parameterisation of bearing-only SLAM. This problem, which can arise even if the beacons are far from the platform, can cause catastrophic failure of the filter.We consider three strategies to overcome this difficulty: applying inequality constraints, the use of truncated second order filters, and a reparameterisation using the negative logarithm of depth. We show that both a simple inequality method and the use of truncated second order filters are succesful. However, the most robust peformance is achieved using the negative log parameterisation. ©2008 IEEE
The common state filter for SLAM
This paper presents the Common State Filter (CSF), a novel and efficient suboptimal Multiple Hypothesis SLAM (MHSLAM) method for Kalman Filter-based SLAM algorithms. Conventional MHSLAM algorithms require the entire vehicle and map state to be copied for each hypothesis. The CSF, by contrast, maintains a single, common instance of the vast majority of the map and only copies the map portion that varies substantially across different hypotheses. We demonstrate the performance of the algorithm on the Victoria Park data set. ©2008 IEEE
Estimating and exploiting the degree of independent information in distributed data fusion
Double counting is a major problem in distributed data fusion systems. To maintain flexibility and scalability, distributed data fusion algorithms should just use local information. However globally optimal solutions only exist in highly restricted circumstances. Suboptimal algorithms can be applied in a far wider range of cases, but can be very conservative.
In this paper we present preliminary work to develop
distributed data fusion algorithms that can estimate and
exploit the correlations between the estimates stored in
different nodes in a distributed data fusion network.
We show that partial information can be modelled as
kind of “overweighted” Covariance Intersection algorithm. We motivate the need for an adaptive scheme
by analysing the correlation behaviour of a simple distributed data fusion network and show that it is complicated and counterintuitive. Two simple approaches
to estimate the correlation structure are presented and
their results analysed. We show that significant advantages can be obtained
A tracker alignment framework for augmented reality
To achieve accurate registration, the transformations which locate the tracking system components with respect to the environment must be known. These transformations relate the base of the tracking system to the virtual world and the tracking system's sensor to the graphics display. In this paper we present a unified, general calibration method for calculating these transformations. A user is asked to align the display with objects in the real world. Using this method, the sensor to display and tracker base to world transformations can be determined with as few as three measurements
Recursive Estimation of Orientation Based on the Bingham Distribution
Directional estimation is a common problem in many tracking applications.
Traditional filters such as the Kalman filter perform poorly because they fail
to take the periodic nature of the problem into account. We present a recursive
filter for directional data based on the Bingham distribution in two
dimensions. The proposed filter can be applied to circular filtering problems
with 180 degree symmetry, i.e., rotations by 180 degrees cannot be
distinguished. It is easily implemented using standard numerical techniques and
suitable for real-time applications. The presented approach is extensible to
quaternions, which allow tracking arbitrary three-dimensional orientations. We
evaluate our filter in a challenging scenario and compare it to a traditional
Kalman filtering approach
OSGAR: a scene graph with uncertain transformations
An important problem for augmented reality is registration error. No system can be perfectly tracked, calibrated or modeled. As a result, the overlaid graphics are not aligned perfectly with objects in the physical world. This can be distracting, annoying or confusing. In this paper, we propose a method for mitigating the effects of registration errors that enables application developers to build dynamically adaptive AR displays. Our solution is implemented in a programming toolkit called OSGAR. Built upon OpenSceneGraph (OSG), OSGAR statistically characterizes registration errors, monitors those errors and, when a set of criteria are met, dynamically adapts the display to mitigate the effects of the errors. Because the architecture is based on a scene graph, it provides a simple, familiar and intuitive environment for application developers. We describe the components of OSGAR, discuss how several proposed methods for error registration can be implemented, and illustrate its use through a set of examples
Extrinisic Calibration of a Camera-Arm System Through Rotation Identification
Determining extrinsic calibration parameters is a necessity in any robotic
system composed of actuators and cameras. Once a system is outside the lab
environment, parameters must be determined without relying on outside artifacts
such as calibration targets. We propose a method that relies on structured
motion of an observed arm to recover extrinsic calibration parameters. Our
method combines known arm kinematics with observations of conics in the image
plane to calculate maximum-likelihood estimates for calibration extrinsics.
This method is validated in simulation and tested against a real-world model,
yielding results consistent with ruler-based estimates. Our method shows
promise for estimating the pose of a camera relative to an articulated arm's
end effector without requiring tedious measurements or external artifacts.
Index Terms: robotics, hand-eye problem, self-calibration, structure from
motio
Federated AI for building AI Solutions across Multiple Agencies
The different sets of regulations existing for differ-ent agencies within the
government make the task of creating AI enabled solutions in government
dif-ficult. Regulatory restrictions inhibit sharing of da-ta across different
agencies, which could be a significant impediment to training AI models. We
discuss the challenges that exist in environments where data cannot be freely
shared and assess tech-nologies which can be used to work around these
challenges. We present results on building AI models using the concept of
federated AI, which al-lows creation of models without moving the training data
around.Comment: Presented at AAAI FSS-18: Artificial Intelligence in Government and
Public Sector, Arlington, Virginia, US
MOLINIÉ, Magali Soigner les morts pour guérir les vivants, Paris, Le Seuil, coll. « Les Empêcheurs de Tourner en Rond », 2006, 317 p.
Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages
This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times
- …
