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Abstract This paper deals with the problem of inference in distributed systems where the probability model is
stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired
by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems,
this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve
the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel
algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the
positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor
nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance,
offers impressive reduction of the information circulating in the network and the needed computation times.
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1 Introduction

Usually, intelligent systems have to reason constrained by noisy information acquired from their environment, i.e.
they have to reason under uncertainty. Since noises are typically modeled as stochastic, probabilistic methods can
be used for addressing the problem. In these approaches, variables of interest are modeled using a collection of
random variables.

The main application of interest in this paper is to solve the problem of inference in a distributed system such
as sensor networks. In sensor networks applications, each node (e.g. sensor) receives information about its local
environment and has a local set of attributes (described in terms of random variables) for which it needs to compute
a posterior density. Thus each node only stores a relevant portion of the model and has to collaborate with other
nodes in the network in order to compute its marginal posterior of interest, given all the observations available to
the system [22].

Graphical models are considered as a formalism to represent the way a joint distribution, defined over a set
of random variables, may be expressed as a product of local factors where each factor depends on a subset of
variables. They have important characteristics [5] making them of a wide applicability in statistics, statistic physics
and machine learning, as well as in computer vision: they represent the structure of a probabilistic model; they
provide a way to visualize the properties of the model (specifically conditional independence properties); visible
graphical manipulations implicitly carry along complex computations required to perform inference.

The popular problem of auto-localization in wireless sensor networks is preeminently a distributed inference
problem and can be formulated as a problem of inference on a graphical model [14]. In fact, many industrial,
scientific and even domestic applications make use of sensor networks when there is a need to monitor, and
possibly control, physical phenomena, such as brightness, temperature or pressure. Sensors acquire information
from their environment and often communicate the data collected to a processing center. However, a vast majority
of applications in sensor networks deploys a large number of sensors randomly, usually due to the hostility of the
area to be monitored, or its immensity. The localization of the sensors is thus necessary to make the data collected
informative.

All sensors cannot be equipped with a positioning module, e.g. GPS module, due to cost and energy constraints.
Alternatively, each sensor is equipped with a transmitter–receiver module and communicates with neighboring
sensors. Some approaches assume that sensors have capabilities to estimate distances with their neighbors, using
technologies such as received signal strength indicator, time of arrival, time difference of arrival [14]. Nevertheless,
approaches in [8,25] are based on measures of connectivity rather than distances. Other approaches are based on
the fact that sensors are able to calculate angles with their neighbors, using technologies such as angle of arrival
(AoA) [24]. The goal is to calculate the coordinates of each sensor based on proximity measures. The computed
coordinates can be global, which requires the position of a number of anchors to be known a priori. These approaches
are known as “anchor-based” [3]. The placement of the anchors can often have a significant impact on the solution.
It was found that the location accuracy improves if the anchors form a convex polygon around the network [21].
Additional anchors placed at the center of the network are nonetheless useful. Other methods create a relative map
without the use of anchors and are called “anchor-free” [1]. In all these cases, nodes must themselves determine
their respective positions through cooperation techniques. It is, though, useful to note that for some algorithms, the
aim is for each node to locate its neighbors qualitatively. [12] presents a localized algorithm whose purpose is, for
each node, to classify its neighbors into one of three categories: very close, near and far.

Each sensor has limited resources (e.g. bandwidth, battery energy, memory capacity, emission power). It can detect
and communicate with other nodes in the network only within some maximum span. Early approaches to solving
the problem of localization in wireless sensor networks were proposed in a centralized environment. However, this
strategy does not comply the principal energy constraint and is not appropriate for large-scale networks. Indeed,
local data processing has low energy cost (see [7] for details about energetic cost of RF communication in function
of distance). In addition, the reliability of the centralized approach is low because a failure in the main processing
unit causes the entire system to fail. Therefrom distributed approaches [8,14] were proposed. A third approach is to
assist the nodes of the network by a mobile anchor enabling them to locate themselves. This approach [3] has many
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advantages in terms of energy and location accuracy but its implementation can be expensive and is not always
feasible as some areas can be hostile to moving robots.

One can also distinguish optimization methods [8,25] and probabilistic methods [23]. While optimization
approaches provide a single optimal solution that minimizes or maximizes some criterion, the solution in prob-
abilistic methods takes the form of a probability distribution. In this paper, we adopt a Bayesian probabilistic
approach because it therefore allows to quantify the uncertainty on the estimated state. The work in [23] presents a
probabilistic method for locating sensors based on AoA technology. The error on the measured angles is modeled
using a Gaussian law. In [14], the localization problem is formulated as a problem of inference on a graphical
model. The nonparametric belief propagation (NBP) algorithm is used to combine the information obtained from
a global positioning system, with measures of relative distances between neighboring sensors. The algorithm of
belief propagation (BP) is based on exchanging information iteratively between neighboring nodes in a graphical
model. The NBP algorithm is itself a variant of BP, where a set of particles is used to represent probability quantities
in a nonparametric way.

Furthermore, in some problems, uncertainties or noise characteristics are unknown or complex. Instead, only
minimum and maximum values of the noise are available, e.g quantized measurements. The interval analysis
framework offers promising methodologies for reasoning in the presence of unknown or complex statistical but
bounded noises [10]. We propose a variant of BP algorithm where information is represented using a collection of
boxes (intervals in the case of real variables). The use of this approach involve simplicity in modeling the information
and memory optimization. In fact, the use of interval representations in our approach offered many advantages,
basically:

1. a reduction of the memory space required to store a pdf (thousands of particles are needed to efficiently represent
a pdf using Monte Carlo methods while only a few box-particles are required to approximate a probability
distribution).

2. energy saving since less information is exchanged between communicating sensors, this also implies a reduction
of the required bandwidth.

3. using interval techniques result in simpler and faster computations and thus more time saving.
4. a set of boxes constitute a direct approximation of the pdf while a set of samples constitute a “representation”

of a pdf. This fact allows to save the energy and time needed to estimate the pdf using kernel density estimation
(KDE) techniques in the case of NBP.

The rest of the article is organized in the following way. We begin in Sect. 2 by introducing the concept of
graphical models. Section 3 presents belief propagation algorithm as a method for solving the problem of inference
defined on a graphical model. However, computations required by BP become intractable in the case of complex
graphical structures and in the presence of uncertainties or nonlinear observation processes. An approach, based
on the use of sample-based representations for uncertainties, as in particle filtering, is described in Sect. 4. The so
formulated algorithm is referred to as NBP. Section 5 presents a novel algorithm that generalizes message-passing
information-exchanging BP algorithm into the bounded error context. Sections 6 and 7 respectively formulate the
localization problem and report some simulation results while Sect. 8 concludes the paper.

2 Graphical Models

A probabilistic graphical model is a graph that combines graph theory with probability theory in order to represent
conditional independence properties of a probability distribution [22]. Formally, a probabilistic graphical model is
a particular graph G defined by G = (V, E)where V is a set of nodes or vertices, and E is a set of edges. Each node
i ∈ V is associated with a random variable Xi and each edge (i, j) represents a probabilistic relation between the
random variables Xi and X j , respectively associated with the nodes i, j ∈ V . Two broad classes of graphical models
exist: directed graphical models and undirected graphical models. Directed graphical models known as Bayesian
networks (BNs) express causal relationships between random variables. Undirected graphical models, also called
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Markov random fields (MRFs), encode constraints and correlations between variables [26]. A third class, referred to
as factor graphs, generalizes the two classes of directed and undirected graphical models [20,29]. For the problem
presented in this paper, MRFs type of graphical model is used and presented in detail in the next section.

2.1 Markov Random Fields

MRFs are a class of graphical models that uses an undirected graph to encode conditional independence relationships
between random variables. They are popular in the fields of statistical physics and computer vision [4].

Consider an undirected graph G = (V, E) and let A, B and D refer to three disjoint subsets of V. If every path
between set A and set B passes through some node in set D, D is said to separate A and B [29]. This graph separation
criterion [22] implies conditional independence between X A and X B given X D:

p(xA, xB |xD) = p(xA|xD)p(xB |xD). (2.1)

For a node i ∈ V , associated with a random variable Xi , let�i ⊂ V denote the set of neighbors of i .�i comprises
all the nodes of the graph connected to i by an edge. The set of variables associated with �i is given by X�i =
{X j | j ∈ �i }. The conditional independence constraints implied by the graph can be formulated straightforwardly
as: any random variable Xi is conditionally independent, given X�i , of all other variables in the model:

p(xi |xV \i ) = p(xi |x�i ). (2.2)

As for the parametrization of a MRF, we refer to the Hammersley and Clifford theorem (see [29] for its formu-
lation). According to this theorem, the joint distribution can be parametrized by a product of factors defined over
the cliques of the graph (where a clique is a set of fully connected nodes in a graph).

p(X) = 1

Z

∏

c∈C

ψc(Xc), (2.3)

where C denotes the set of cliques in the graph, the factors ψc(Xc) denote some joint probability of the random
variables Xc associated with the clique c, and are referred to as potential functions, and Z is a normalization
constant. Obviously, the parametrization using the cliques is not unique. Figure 1 illustrates an example of a MRF.
One possible parametrization of the graph is also given.

Pair-wise MRFs are a restricted class of the MRF family. In a pair-wise MRF, the cliques are exclusively pairs
of nodes of the graph connected by edges. In typical scenarios, the set of nodes is partitioned into two disjoint sets

Fig. 1 Example of a Markov network. The joint distribution factors into the product p(X) = 1
Z ψ235(X2, X3, X5)ψ245(X2, X4, X5)

ψ12(X1, X2)
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Vx and Vy associated respectively with the set of hidden variables X = {X1, X2, . . . , X N } and the set of observable
variables Y = {Y1,Y2, . . . ,YM } of the model, where N = |Vx | and M = |Vy |. The set Vx is called the set of
hidden or latent nodes. The nodes in set Vy are referred to as evidence nodes. Thereafter, the potential functions
may be partitioned into two groups: the first group corresponds to the edges existing between the hidden variables
and the observations. The second group corresponds to the edges interconnecting hidden variables. The first group
of potential functions will be denoted ψi (Xi ,Y) and the second set will be referred to as ψi j (Xi ,X j ). The joint
probability distribution may then be put into the following form:

p(X,Y) = 1

Z

∏

(i, j)∈E,i∈Vx , j∈Vx

ψi j (Xi ,X j )
∏

i∈Vx

ψi (Xi ,Y). (2.4)

2.2 Inference in Graphical Models

To define the problem of inference in graphical models, the typical scenario, as mentioned above, is to separate
the set of nodes V into two disjoint sets V = {Vx , Vy} associated with the hidden and the observable variables
respectively. The inference problem generally refers to finding the distribution of all, or of a subset of, hidden
variables given the observations [26]. This distribution denoted p(x|y) is called the posterior distribution. In this
paper, it is assumed that the undirected graph modeling the distribution is a pair-wise MRF. It is also assumed that
the set y of observations is actually a collection of observations, ys , of individual node variables, xs , each corrupted
by a statistical noise that is independent of other components of x and y. The observations ys are said to be local
to their associated hidden variables xs [13]. The interpretation of this assumption is that ψi (Xi ,Y) = ψi (Xi ,Yi )

(local likelihood). Referring to the subsection above, the posterior of interest can be expressed as follows:

p(x|y) = p(x, y)
p(y)

∝
∏

(i, j)∈E

ψi j (xi , x j )
∏

i

ψi (xi , yi ). (2.5)

Figure 2 illustrates the problem of inference on a graphical model. In this figure, the state vector is X =
(X1, X2, X3, X4, X5, X6, X7) and the vector of local observations is Y = (Y1,Y3,Y5).

3 Belief Propagation Algorithm

Belief propagation, also known as the sum-product algorithm, is a tool for solving the problem of inference on
graphical models. It is a statistical estimation algorithm that applies specifically to BNs and MRFs. BP exploits
the conditional independence relationships represented by the graphical models in order to calculate, in an exact
or an approximated way, the posterior distribution at a node of the model. Although, the focus in our exposition
is on pair-wise MRFs, which are a restricted class of undirected graphical models, the methods underlying BP as
described in this section are also adapted to message-passing in Bayesian networks as well as in factor graphs [6,29].

Fig. 2 The problem of inference: the shaded nodes represent the variables for which an observation is available
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The inference goal is to compute the posterior marginal distribution associated with a node t given the set of
observations Y:

p(xt |y) =
∫

x\xt

p(x|y)dx . (3.1)

This marginalization task is captured by belief propagation in an iterative fashion. Noting that

p(x|y) ∝
∏

(t,s)∈E

ψts(xt , xs)
∏

t

ψt (xt , yt ),

in the most common form of BP, at each iteration, each node calculates outgoing messages to all of its neighbors
simultaneously. The outgoing message from a node t to one of its neighbors s at an iteration i of BP, is updated
in terms of the messages incoming to t, at iteration i − 1, from the set of t’s neighbors (noted �t ) except for that
incoming from s itself (see Fig. 3 for an illustration of BP’s message update operation). The message outgoing
from t to s at iteration i is denoted mi

ts(xs). For the simplicity of the notation we will refer to the local likelihood
ψt (xt , yt ) as ψt (xt ).

mi
ts(xs) ∝

∫
ψts(xt , xs)ψt (xt )

∏

u∈�t\s
mi−1

ut (xt )dxt . (3.2)

Throughout this article, Ri−1
ts (xt ) denotes the message product:

Ri−1
ts (xt ) ∝

∏

u∈�t\s
mi−1

ut (xt ), (3.3)

while

Mi
ts(xt ) ∝ ψt (xt )

∏

u∈�t\s
mi

ut (xt ) (3.4)

is referred to as partial belief. It combines all the available information about t , from t itself and t’s neighboring
nodes (except for the destination node s).

Next to message-passing, the belief at each node t, defined at iteration i, is computed using the following
expression:

qi
t (xt ) ∝ ψt (xt )

∏

u∈�t

mi
ut (xt ). (3.5)

Fig. 3 Message update
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Fig. 4 Belief computation

Figure 4 illustrates BP’s belief computation. Beliefs are normalized in order to integrate to unity [13]. The
interpretation of the belief at a node t is that it approximates the posterior marginal of interest p(xt |y). In fact, under
some conditions the belief converges to the exact posterior marginal distribution.

If the graphical model is tree-structured (i.e. is loop free), belief Propagation is guaranteed to converge after
a finite number of iterations (at most equal to the length of the longest path in the graph [13]). In this case, the
belief at a node t will be exactly equal to the posterior marginal of interest p(xt |y). Nevertheless, BP may also
be applied to arbitrary graphical models. The same local belief propagation equations are iterated overlooking the
presence of loops in the graph. This iterative procedure is then referred to as loopy belief propagation. In this
case, the convergence of the sequence of messages is not guaranteed. Under some conditions however, fixed points
will appear and in practice, these fixed points (beliefs) constitute reasonable approximations of the exact posterior
marginal distribution associated with the node. Loopy belief propagation is explained in details in [6]. Furthermore,
it is worth mentioning that algorithms for exact marginalization on arbitrary graphical models do exist. One popular
algorithm known as JLO (after its authors F.V. Jensen, S.L. Lauritzen and K.G. Olesen) is based on junction tree
representation. This algorithm starts by grouping nodes into cliques to break the original graph’s cycles and is well
elaborated in [22].

4 Nonparametric Belief Propagation

Sequential Bayesian filtering consists in estimating the states (at each time step) of a system as a set of observations
become available [30]. While standard Bayesian solutions such as the Kalman filter [31] and its variants [19]
make an assumption on a known posterior distribution form (e.g. Gaussian) to simplify this recursive Bayesian
estimation, sequential Monte Carlo [18] techniques also known as particle filtering make no assumptions on the
form of the probability densities of interest. Particle filtering [2] uses sample-based representations in order to
construct Monte Carlo approximations of the required integrals in the case of seriously non-linear and complex
posterior distributions.

Recall that belief propagation is a tool for performing exact or approximate marginalization on arbitrary graphical
models. This algorithm relies on two operations which can represent major complexity when performed for general
case potential functions/messages. The first operation is a product of a collection of messages, the second is a
convolution operation of this message product with a pairwise potential function [see Eq. (3.2)]. For this reason,
BP can be practically implemented only in special cases when these two operations remain tractable, namely in the
case of discrete-valued random variables (matrices computation) and in the case of Gaussian distributions [13]. In
many applications of graphical models, the hidden variables of interest are described by continuous non-Gaussian
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distributions. That is especially the case of graphical models applications in computer vision [28]. Furthermore, the
model ( the observation model or the functions describing the propagation of information between nodes) may be
governed by serious non-linearities. NBP is an attractive solution in the presence of such complex situations.

NBP algorithm is considered, on one hand, as a generalization of particle filtering applied to arbitrary graphical
models and on the other hand as a stochastic approximation of BP [13,28].

The basic idea behind NBP is to use sample-based representations to approximate the operations of BP. As
stated above, the message update task is divided into two operations [28]. The first operation is a message product
operation through which the partial belief is computed according to Eq. (3.4). The second operation is a convolution
operation. As shown in Eq. (3.2), the available information about t is propagated through the pair-wise potential
function ψts(xt , xs) in order to form a message providing some information about the receiving node’s local state.
In NBP, messages mi

ut (xt ) are represented by a collection {ω j
ut , x j

ut }, j = 1, . . . , N , of weighted samples. An
estimation of mi

ut (xt ) is hence given by

m̂i
ut (xt ) =

N∑

j=1

ω
j
utδ

(
xt − x j

ut

)
. (4.1)

To perform the product operation, this form of the message is smoothed using nonparametric density estimation
methods [27]. The idea is to smooth the effect of each sample onto a nearby region using a kernel, e.g. a Gaussian
kernel noted Kh . The message estimate is now given by a mixture of N Gaussian distributions:

mi
ut (xt ) =

N∑

j=1

ω
j
ut Kh

(
xt − x j

ut

)
. (4.2)

Performing the product of d messages, each represented by a mixture of N Gaussian distributions, the result is
a Gaussian mixture containing N d components. To avoid complex computations, the author in [13] proposes to
sample exactly N particles from this product of Gaussian mixtures using a Markov chain Monte Carlo method,
namely the Gibbs sampler.

Having a collection {� j
ts, X j

ts} of weighted particles representing the partial belief Mi
ts(xt ), the next step is to

approximate the integral given in Eq. (3.2). Recalling Monte Carlo methods, if N independent samples xi
p ∼ p(x),

i = 1, . . . , N can be drawn from a probability density function p(x), the expectation of any function f of x under
the distribution p may be approximated empirically as follows:

Ep( f (x)) =
∫

f (x)p(x)dx ≈ 1

N

N∑

i=1

f
(

xi
p

)
. (4.3)

A direct application of Monte Carlo approximation may be adopted here. However, the pair-wise potential function
ψts(xt , xs) might have influence on xt . In other words, the marginal

ζts(xt ) =
∫
ψts(xt , xs)dxs (4.4)

is not always equal to 1. NBP algorithm accounts for this marginal influence by incorporating ζts(xt ) into the
message product operation [13].

Figure 5 summarizes NBP operations. NBP can provide a solution to the problem of inference in arbitrary
graphical models containing high-dimensional variables with continuous non Gaussian distributions or presenting
severe non-linearities [28]. Each iteration of NBP uses a sampling procedure to update kernel-based estimates of
the true messages. On one hand, the storage of a sufficiently large number of weighted particles, and on the other
hand, the overhead assigned to computing KDEs and to sampling from the product of Gaussian mixtures, increase
the complexity associated with NBP’s computations. This difficulty was the motivation behind developing the novel
scheme of message-passing presented in the next section.
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Fig. 5 Nonparametric belief propagation

5 Belief Propagation Combined with Interval Analysis

This section presents an algorithm that uses bounded error methods for solving the inference problem in an arbitrary
graphical model. In fact, the use of interval representations offers many advantages, basically:

1. a reduction of the memory space required to store the messages and beliefs.
2. energy saving since the exchanged information between communicating nodes is much less bulky (this also

implies a reduction of the required bandwidth).
3. using interval-based representations avoids the overhead associated with the computation of nonparametric

density estimates and the procedure of sampling from the product of Gaussian mixtures in NBP. This translates
into simpler and faster computations and thus more time saving (see Sect. 7).

4. avoiding the need to introduce artificial parameters in order to approximate the true messages, since a set of
boxes constitute a direct approximation of the pdf, and getting around the convergence problem of MCMC
samplers.

5.1 Interval Analysis

An interval in R is a closed and connected subset of R defined as

[x] = [x, x] = {x ∈ R | x ≤ x ≤ x}, (5.1)

where x and x refer, respectively, to the minimal and maximal bounds of [x].
A box on the other side represents a vector [x] in R

n and is defined as a Cartesian product of n intervals:

[x] = [x1] × · · · × [xn]. (5.2)

Henceforth, |[x]| will denote the length of the interval [x], IR will refer to the set of intervals in R, and IR
n the set

of boxes in R
n .

Operations on Intervals and Boxes.
Firstly, set-theoretic operations (such as intersection and union) are applicable to intervals. Note that the inter-

section of two intervals is always an interval, whereas their union is not necessarily an interval. The interval union
of two intervals [x] and [y] is defined by the following expression:

[x] � [y] = [[x] ∪ [y]] , (5.3)

where interval union operation is denoted by � whereas ∪ refers to the set-theoretic union operation. The symbol
[.] denotes the interval hull operator returning, for any set S in R, the smallest interval enclosing S [17].
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Secondly, the binary operations {+,−,×, /} can be extended to intervals [17]. Let the symbol 
 refer to any
binary operation and [x] and [y] denote any two intervals in R, the resulting interval [z] = [x] 
 [y] is defined as

[z] = [x] 
 [y] = [{x 
 y | x ∈ [x], y ∈ [y]}] . (5.4)

If the binary operation 
 is continuous, as in the case of the usual arithmetic operations, the set {x 
 y ∈ R|x ∈
[x], y ∈ [y]} is an interval. Thus,

[x] 
 [y] = {x 
 y ∈ R|x ∈ [x], y ∈ [y]}.
The extension to intervals of the usual arithmetic operations {+,−,×, /} is given next. Recall that [x] = [x, x] and
[y] = [y, y].
[x] + [y] =

[
x + y, x + y

]
,

[x] − [y] =
[
x − y, x − y

]
,

[x] × [y] =
[
min(x y, x y, x y, x y),max(x y, x y, x y, x y)

]
. (5.5)

If the interval [y] does not include the 0 value, one can also define

[x]/[y] = [x] × [1/y, 1/y].
Similarly, elementary functions such as exp, ln, cos and sin, can be simply extended to intervals.

Furthermore, all operations on intervals can be extended to boxes.
Inclusion Functions.

Consider a function f from R
n to R

m . We are interested in computing the image f([x]) of a box [x] by f. This image
is often not a box (see Fig. 6) and its expression might be difficult to obtain. An inclusion function approximates
f([x]). Let [f] denote an interval function from IR

n to IR
m . By definition, [f] is said to be an inclusion function for f if

f([x]) ⊆ [f]([x]), ∀[x] ∈ IR
n . (5.6)

Inclusion functions may be very pessimistic [16]. An inclusion function [f] is minimal if, for any x, [f]([x]) is the
interval hull of f([x]). The minimal inclusion function for f is unique and will be denoted by [f]∗. Refer to Fig. 6
for an example.

Amongst the main purposes of interval analysis [17] are: firstly, finding an inclusion function [f] such that, for
most x, [f]([x]) is close to [f]∗([x]); and secondly, finding it with a convenient computational time.
Constraints Satisfaction Problem and Contraction.

Another popular topic in interval analysis are the constraints satisfaction problems (CSPs). Let x be a vector of
n variables xi ∈ R, i ∈ {1, . . . , n}, i.e. x = (x1, x2, . . . , xn)

T . f = ( f1, f2, . . . , fm)
T is a multivalued function

such as

f(x) = 0. (5.7)

Fig. 6 Inclusion function [10]
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The components f j , j ∈ {1, . . . , n} of f represent constraints linking the variables xi . The vector x belongs to a
given prior domain [x] of IR

n . The purpose is to find the smallest box enclosing the set of all x in the prior domain
[x] which satisfy the constraints f. A CSP is commonly denoted as H and may be formulated as follows:

H : (f(x) = 0, x ∈ [x]). (5.8)

The solution set of the CSP H is given by

S = {x ∈ [x] | f(x) = 0} (5.9)

and is not necessarily a box. Hence the domain H is contracted [17]. The term contracting refers to replacing [x] by
a smaller domain [x]′ such that S ⊆ [x]′ ⊆ [x]. A well known contraction method is that of constraints propagation
(CP). This contraction technique is simple, efficient and most importantly independent of nonlinearities [10].

The CP method is based on the use of primitive constraints. A constraint is said to be primitive if it involves a
single binary operation (such as +,−,×, /) or a single elementary function (such as sin, cos, ln, exp). Constraint
Propagation technique proceeds by contracting H with respect to each primitive constraint until convergence to a
minimal domain. This method also referred to as FBP [11] consists of two steps: the forward propagation and the
backward propagation. The first step considers the direct forms of the equations. The second uses the inverse of the
functions that appear in the equations. Illustrative examples of CP method can be found in [10].

5.2 The Box Particle Filter

The directed graph in Fig. 7 represents the problem of filtering. In this figure, xk denotes the state vector at
time step k while yk refers to the observation available at time k. In many applications, the posterior probability
distribution p(xk |yk, yk−1, . . . , y1) provides sufficient information about the system’s state. Filtering problem can
thus be seen as a particular inference problem defined on a temporal Markov chain [13]. As stated in Sect. 4,
particle filtering (PF) is a Monte Carlo based method for sequentially estimating the posterior marginal distributions
p(xk |yk, yk−1, . . . , y1) [18] and NBP can be considered as a generalization of PF to an arbitrary graphical model [13].
The aim of the Box-PF is to generalize particle filtering into the bounded error context [10]. In the following
description of the box-PF, we consider the following model:
{

xk+1 = f (xk, vk+1),

yk+1 = g(xk+1, wk+1),
(5.10)

where f is a nonlinear transition function, g is a function that defines the relation between the state and the
measurement vectors, v and w denote noise sequences. Four steps describe the Box-PF: box particle initialization,
time update, measurement update and resampling.

• Box Particle Initialization. In this stage a prior bounded state space region is split into N equally weighted and
mutually disjoint boxes {[x(�)0 ]}N�=1. This initialization using boxes allows to explore a large prior uncertainty
region using only a few box particles.

Fig. 7 Filtering problem [30]
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• Time Update Step. Knowing the cloud of box particles {[x(�)k ]}N�=1 representing the state at time step k and
assuming that the system noise is enclosed in [vk+1], the boxes at step k are propagated using interval analysis
tools through the transition function
[
x(�)k+1

]
= [f]

([
x(�)k

]
, [vk+1]

)
f or � = 1, . . . , N ,

where [f] is an inclusion function for the transition function f.
• Measurement Update Step. Similarly to particle filtering, the weights of the predicted box particles are updated

using the new measurement at time step k+1. For this purpose, likelihood factors are calculated using innovation
quantities [10]. The innovation for the �-th box particle reflects the proximity between the measured box and the
predicted box measurement. Hence, the innovation can be represented using the intersection between these two
boxes. For each box particle, i.e. for � = 1, . . . , N , the predicted box measurement has the following expression:
[
y(�)k+1

]
= [g]

([
x(�)k+1

])
,

where [g] is an inclusion function for g. The innovation is given by:
[
r(�)k+1

]
=

[
y(�)k+1

]
∩ [yk+1].

In the bounded error context, the likelihood is calculated based on the following idea: if the predicted box
measurement does not intersect with the corresponding measured box, this box particle has a likelihood factor
equal to zero. In contrast, if the predicted box measurement is included in the corresponding measured box, this
box particle has a likelihood close to one [10]. Furthermore, a contraction step is performed in order to eliminate
the inconsistent part of the box particles with respect to the measured boxes, and to preserve an appropriate
size of the boxes. The box likelihood is thus given by:

L(�)k =
nx∏

j=1

L(�), j
k ,

where nx represents the dimension of the state and the likelihood factor according to a dimension j of x is given by

L(�), j
k =

∣∣∣
[
x̃(�)k+1( j)

]∣∣∣
∣∣∣
[
x(�)k+1( j)

]∣∣∣
.

The term [x̃(�)k+1( j)] represents the new �-th box particle after the contraction step.
• Resampling Step. Similarly to the PF algorithm, a resampling step is also added in order to introduce variety into

the box particles. Different resampling algorithms exist. However, in the Box-PF algorithm reported in [10], the
multinomial resampling is applied, combined with a new subdivision step; this means that, after resampling,
each box is divided by the corresponding number of realizations in order to obtain smaller boxes around the
regions with high likelihoods.

Note that the Bayesian justification for the steps described here for the box-PF was established by interpreting each
box as a uniform pdf [10].

5.3 Belief Propagation in the Bounded Error Context

This section presents the main theoretical contribution of this paper. A message passing algorithm is used to infer
on graphical model when posterior probabilities are represented using boxes. Inspired by the theoretic derivation of
the Box-PF presented in [9,10], we show the theoretic derivation of BP in the bounded error context by interpreting
a box as a uniform pdf. Note that an advantage offered by this interpretation is that while, strictly speaking, a set
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of samples constitute a “representation” of a pdf, a set of boxes constitute a direct approximation of the pdf. Going
back to Eq. (3.2) representing BP’s message update, recall that the first operation is the messages product:

Ri−1
ts (xt ) ∝

∏

u∈�t\s
mi−1

ut (xt ) =
d∏

l=1

mi−1
ul t (xt ).

�t denotes the set of neighbors of t, ul ∈ �t\s and d = card(�t\s). In our method, the messages are represented
using N weighted boxes. Thus, a message mul t (xt ) received by node t from its neighbor ul , l = 1, . . . , d, is
represented by the collection {ωpl

ul t , [x pl
ul t ]}Npl=1. Note that, for simplicity, in this representation we skip the index i

(referring to the message passing iteration number) on the particles and their weights. Since each box is interpreted
as a uniform probability distribution, then:

mi−1
ul t (xt ) =

N∑

pl=1

ω
pl
ul tU[x pl

ul t ](xt ), f or l = 1, . . . , d,

where U[x] denotes the uniform pdf over the box [x]. Let P denote the vector of indexes (p0, p1, . . . , pd). Replacing
the expression above in that of the message product we obtain

Ri−1
ts (xt ) ∝

d∏

l=1

⎛

⎝
N∑

pl=1

ω
pl
ul tU

[
x

pl
ul t

](xt )

⎞

⎠

∝
∑

P∈I d

ω
p1
u1t . . . ω

pd
ud tU

[
x

p1
u1 t

] . . .U[
x

pd
ud t

](xt ),

(5.11)

where I = {1, 2, . . . , N }. Recall that a uniform pdf U[x] is actually constant (and equal to 1/|[x]|) over its support
and equal to zero everywhere else. The product U[x p1

u1t ] . . .U[x pd
ud t ](xt ) is then different to zero if xt belongs to the

intersection of the supports of its terms. This product may hence be modeled using a uniform pdf given by

U[
x

p1
u1t

] . . .U[
x

pd
ud t

](xt ) = U[
x

p1
u1t

]
∩···∩

[
x

pd
ud t

] ×
∣∣[x p1

u1t
] ∩ · · · ∩ [

x pd
ud t

]∣∣
∣∣[x p1

u1t
]∣∣ . . .

∣∣[x pd
ud t

]∣∣ . (5.12)

Then

Ri−1
ts (xt ) ∝

∑

P∈I d

ω
p1
u1t . . . ω

pd
ud tU

[
x

p1
u1t

]
∩···∩

[
x

pd
ud t

] ×
∣∣[x p1

u1t
] ∩ · · · ∩ [

x pd
ud t

]∣∣
∣∣[x p1

u1t
]∣∣ . . .

∣∣[x pd
ud t

]∣∣ . (5.13)

The number of possible assignments of P is N d . Thus, the sum above contains at most N d terms. In practice, this
number is much less given that some combinations result in an empty intersection while others result in coincident
boxes. Note that for simplicity, we are considering all messages represented using the same number of boxes, N .
This reasoning may however be easily extended to a more general case with varying number of box particles per
node/message.

Let us denote by Q the set of assignments of P , for which [x p1
u1t ] ∩ · · · ∩ [x pd

ud t ] �= ∅ and let Z = card(Q). We
will also adopt the following notations for an assignment Pk ∈ Q, where k = 1, . . . , Z :

ω
p1
u1t . . . ω

pd
ud t ×

∣∣[x p1
u1t

] ∩ · · · ∩ [
x pd

ud t
]∣∣

∣∣[x p1
u1t

]∣∣ . . .
∣∣[x pd

ud t
]∣∣ = ω

k
ts,

[
x p1

u1t
] ∩ · · · ∩ [

x pd
ud t

] =
[
xk

ts

]
.

The weights ωk
ts shall be normalized.

Based on Eq. (5.13) we can define an algorithm to perform the messages combination task.
Algorithm 1 describes the method for combining two messages according to (5.13); note that both operations,

(×) and (∩) are associative operations. In this algorithm, each message is represented using a certain number of
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weighted boxes. M1 (M2) denote the array of boxes representing message 1 (message 2), W1 (W2) represents the
corresponding weights. Xts and Wts denote respectively the resulting array of boxes and the corresponding weights.

Algorithm 1. Messages combination.

1. Initialize Xts and Wts to empty arrays, set k=0.
2. Set L1 equal to the number of boxes representing message 1, and L2 equal to the number of boxes representing

message 2.
3. (Nested loops)

i = 1, . . . , L1

j = 1, . . . , L2

if (M1(i) ∩ M2( j) �= ∅)
• k = k + 1,
• Xts(k) = M1(i) ∩ M2( j),
• Wts(k) = W1(i)×W2( j)× |M1(i)∩M2( j)|

|M1(i)|.|M2( j)| .

4. Check for the existence of coincident boxes in Xts , keep one occurrence and sum up the corresponding weights.
5. Normalize the weights:

Wts(k)←− Wts(k)/sum(Wts).

The partial belief is now given by the following expression:

Mi−1
ts (xt ) ∝ ψt (xt )

Z∑

k=1

ωk
tsU[

xk
ts

](xt ), (5.14)

whereψt (xt ) is actuallyψt (xt , yt ) [see Eq. (2.5)]. In the general case, the potential functionψt (xt , yt ) can be repre-
sented as a function g linking the local observation yt at node t to the local state xt (observation model), yt = g(xt , vg)

where vg is a bounded measurement noise. Using contraction techniques (see Sect. 5.1), the resulting weighted
boxes {ωk

ts, [xk
ts]}Zk=1 can be contracted and re-weighted [15]. Algorithm 2 summarizes the procedure of contracting

the boxes {ωk
ts, [xk

ts]}Zk=1 using the measurement [yt ]. In this procedure [g] denotes an inclusion function for g.

Algorithm 2. Contraction using the local likelihood.

input:
{wk

ts, [xk
ts]}Zk=1: set of boxes and corresponding set of weights,

[yt ]: observation at node t .

1. Predicted measurement:
[yk] = [g]([xk

ts], [vg]), f or k = 1, . . . Z .
2. Innovation: [rk] = [yk] ∩ [yt ], f or k = 1, . . . Z .
3. Box particle contraction: if [rk] �= ∅, then contract [xk

ts] using [rk] and CP algorithm to obtain [xk
ts]new, else

[xk
ts]new = ∅, for k = 1, . . . Z .

4. Re-weighting: wk
ts ←− wk

ts × |[x
k
ts ]new |
|[xk

ts ]| .
5. Weights normalization:
wk

ts ←− wk
ts/sum(wts).
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Note that the belief at node t as given in Eq. (3.5) can be computed in the same manner.
The next step in the message update iteration is the convolution operation of the partial belief with the pair-wise

potential function:

mi
ts(xs) =

∫
ψts(xt , xs)M

i−1
ts (xt )dxt

=
∫
ψts(xt , xs)

V∑

k=1

ωk
tsU[

xk
ts

](xt )

=
V∑

k=1

ωk
ts

∫

[
xk

ts
]
ψts(xt , xs)U[

xk
ts

]dxt

=
V∑

k=1

ωk
ts

1∣∣[xk
ts

]∣∣

∫

[
xk

ts
]
ψts(xt , xs)dxt .

(5.15)

To develop further Eq. (5.15) consider general practical case where the potential ψts(xt , xs) can be represented as a
transition function by which we can pass from xt to xs , i.e. xs = f (xt , e, v f ) where v f denotes a noise and e refers
to a vector of constants (e.g. some known parameters of the model), and let [ f ] be an inclusion function for f . We
assume that the noise v f is bounded in the box [v f ].

Then, by definition of an inclusion function, we have

∀xt ∈
[
xk

ts

]
, xs ∈ [ f ]

([
xk

ts

]
, [v f ], [e]

)
f or k ∈ {1, . . . , Z},

i.e.

ψts(xt , xs)U[
xk

ts
](xt ) = 0, ∀xs /∈ [ f ]

([
xk

ts

]
, [v f ]

)
. (5.16)

Equation (5.16) shows that for any transition function f , using interval analysis techniques, the support for the pdf
terms

∫
[xk

ts ] ψts(xt , xs)U[xk
ts ]dxt can be approximated by [ f ]([xk

ts], [v f ], [e]) and thus:

∫

[
xk

ts
]
ψts(xt , xs)U[

xk
ts

]dxt ≈ U[ f ]([xk
ts

]
,[v f ],[e]

). (5.17)

Note that, it is shown in [10] that approximation (5.17) can be done more precisely at a computation cost using
a mixture of uniform boxes e.g. more than one box particle. For simplicity and without loss of generality only
one box is used in this paper. Based on Eqs. (5.15) and (5.17), we can describe the message update procedure,
for a message sent from node t to its neighbor s, as follows: Once the incoming messages to the sending node t
are combined as depicted in Algorithm 1 and contracted using the local potential function at t, the resulting boxes
{Xts(k)}Zk=1, combining all information about xt , are propagated through the model xs = f (xt , v, e) to obtain
an information about xs . The weights must also be corrected (divided by |[Xts(k)]|) and then normalized. This
procedure is summarized in Algorithm 3.
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Algorithm 3. Message update.

1. Set MsgCounter = 0.
2. for (u ∈ �t and u �= s)

if a message is incoming from u to t, increase MsgCounter .
3. Messages product

• if (MsgCounter = 0) and an observation is available for t,
use it to generate uniformly N boxes mutually disjoint and weighted equally with 1

N .
• if (MsgCounter = 0) and no observation is available for t,

no message can be forwarded from t to s.
• if (MsgCounter �= 0), use Algorithm 1 and the associativity of (∩) to combine the messages. Get the arrays
{Xts(k)} and {Wts(k)}. Note that if an observation is available for t, it is used to contract the resulting boxes
using Algorithm 2.

4. Weights correction: Wts(k)←− Wts(k)/|Xts(k)|.
5. Propagate the boxes through the model xs = f (xt , v, e).
6. Weights normalization:

Wts(k)←− Wts(k)/sum(Wts).

Notes About the Algorithm

1. For the first iteration of message-passing between neighboring nodes, the messages are initialized using the local
likelihood (obviously no previous messages exist). This is shown in the first two items of point 3 in Algorithm
3. If no observation is available for the sending node t, no message could be sent, at the first iteration, from t to
any of its neighbors. If, however, an observation is available for t, we use it to generate uniformly N boxes [xk

t ]
mutually disjoint and weighted equally with 1

N .
2. When propagating the boxes [xk

ts], representing an information about xt , through the model f , if an observation
is available for the receiving node s, i.e. a prior domain for xs is known, contraction techniques (see Sect. 5.1)
might be used to reduce the size of the forwarded boxes.

3. To compute the belief at any node t, at a certain iteration, points 1–3 of Algorithm 3 are used with the difference
that we actually combine all incoming messages to t from the set of all its neighbors, �t .

Figure 8 summarizes the operations of BP in the bounded error context.

6 Self Localization in Sensor Networks: Problem Formulation

A number n of sensors is randomly deployed in a planar region. Each sensor has noisy measurements of its distances
from neighboring sensors. The position of sensor t is denoted xt , t = 1, . . . , n. A small number of nodes (called
anchors) have significant a priori information, pt (xt ), about their positions. These sensors can be placed manually
or can be equipped with a GPS module if manual placement is impractical. Two sensors are able to communicate if
the distance separating them is less than some maximum range denoted R. Let dts denote the noisy measurement
of the distance between sensors s and t , then:

dts = ||xt − xs || + vts, vts ∼ pv(xt , xs), (6.1)

where pv(xt , xs) refers to the noise probability distribution and || . || denotes the Euclidean distance between t and
s. The binary random variable ots indicates whether the distance dts is observed or not. According to the assumption
above:
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Fig. 8 Belief propagation combined with interval analysis

P(ots = 1) = 1||xt−xs ||≤R . (6.2)

The joint probability distribution p(x1, . . . , xn, {dts}(t,s):ots=1) can be factorized as follows:

p(x1, . . . , xn, {dts}(t,s):ots=1) =
∏

(t,s):ots=1

p(dts |xt , xs)
∏

t

pt (xt ). (6.3)

Set

ψts(xt , xs) = p(dts |xt , xs)

= pv(dts − ||xt − xs ||) i f ots = 1,

ψt (xt ) = pt (xt ),

(6.4)

then

p(x1, . . . , xn, {dts}(t,s):ots=1) =
∏

t

ψt (xt )
∏

t,s

ψts(xt , xs). (6.5)

The undirected graph describing this joint probability distribution is a graph in which each node represents a sensor
and each arc models an established neighborhood between two sensors. This factorization indeed justifies the
intuitive representation of this system by a graph wherein each edge represents an actual physical link established
between neighboring sensors/nodes allowing them to communicate and to mutually detect each other.

Both algorithms, the novel BP with box representations and NBP, are tested using the scenario described herein.
For the novel box-BP algorithm, message passing between two neighboring nodes, namely t and s, is conducted as
follows. For the first iteration, messages are initialized using the local observations. Only anchor nodes are thus able
to send informative messages to their neighbors, since they are the only nodes with significant a priori information,
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Fig. 9 An inclusion function for the propagation model. The small box represents the position of sensor t . The circles of radius d
centered at the four summits of this box are shown. The bigger box represents the possible position of sensor s. The true positions of t
and s are also shown

pt (xt ), about their positions. The prior information being represented by a box, N boxes [x j
t ]0, j = 1, . . . , N ,

mutually disjoint and weighted equally with 1
N are uniformly generated from the available observations at the

anchors.
At an iteration i , the message product at node t is represented by a collection {ω(i)t , [xt ](i)} of N weighted

box-particles, obtained using Algorithm 1. These boxes are contracted and re-weighted using the local evidence
at t as described in Algorithm 2. Note that in this application, we are in the special case of an observation yt of
the same nature as the state xt , the contraction reduces into an intersection between [yt ] and [xt ]i . The forwarded
message from t to s, separated by noisy distance dts , is then computed by propagating these boxes {[xt ](i)} through
the following model, as shown in the approximation (5.17):

m(i)
ts = x(i)t + dts

(
cos(θ)

sin(θ)

)
, (6.6)

where θ ∈ [0, 2π ]. Figure 9 illustrates the result of propagating a box through the model (6.6). Let [xt ] =
[xt xt ] × [yt

yt ] and [dts] = [d d]. Then:

[dts] × cos[θ ] = [d d] × [−1 1]
= [−d d],

[xt ] + [dts] × cos[θ ] = [xt xt ] + [−d d]
= [xt − d xt + d].

Similarly,

[yt ] + [dts] × sin[θ ] = [y
t
− d yt + d].

The implementation of NBP for self localization in sensor networks is described next. For the first iteration, N
particles {ω0

t , x0
t } are sampled from pt (xt ). At an iteration i of NBP, the message product at node t is represented by

a collection {ωi
t , xi

t } of weighted particles. The weights are corrected using the local evidence at t . The forwarded
message from t to s, separated by noisy distance dts , is then computed by propagating the samples {xi

t } through the
model (6.6) where θ ∼ U ([0, 2π ]).
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7 Simulation Results

We present next some simulation results. In our simulations, 100 sensors are randomly deployed in a planar region
L × L .

7.1 Grid-Like Placement of the Anchors

Basically, two parameters can have impact on the solution provided by a localization algorithm: the range within
which the sensors can communicate and the number of anchor nodes. Varying the communication range R leads to
a variation of the number of neighborhoods established. Thus, increasing R, more links between neighboring nodes
are established and a more complex graph is obtained. In [14], only three anchor nodes are used for calibration.
In order to obtain accurate results for NBP, the authors choose to increase the number of neighborhoods/links
established between sensors. This resulted in a very dense graphical model and thus complex computations and
more energy and time consumption. Drawing on scenarios presented in [8,21], we choose to place nine anchors in
a grid-like position. Eight of them are located on the contour of the region, these can be placed manually, and one
anchor is at the center of the network. In fact, positioning algorithms perform better when anchors surround the
nodes with unknown positions [21]. Intuitively, nodes at the edges of the graph are less likely to be connected making
their localization more difficult. The range of communication is set to R = L/4. The noise standard deviation is set
to 0.005L . Figure 10 shows the distribution of the sensors. Anchor nodes are marked by circles. Figure 11 shows
the corresponding graphical model for R = L/4.

Table 1 summarizes the results obtained for both NBP and box-BP algorithms. The simulations were carried out
using Matlab on Intel Core i7-3520M processor (2.90 GHz–4 MB Cache, Dual-core) for L = 100 m. The error
refers to the root mean squared error (RMSE), it shows the mean distance between the true and the estimated position
of a sensor and is given as a percentage of L . For the box-BP algorithm, the error is calculated using the distance
between the center of the boxes and the true position of the sensors. Note that both algorithms achieve comparable
accuracy (see Table 1). However, in order to represent the posterior pdf, NBP stores 200 weighted particles, which
corresponds, in our 2D application to a total of 600 floating points values. The box-BP algorithm uses only 9 box
particles, that is equivalently 45 floating points values. This reduced storage capability is a great enhancement in
terms of energy saving and bandwidth needed for the information exchanged in the network. Furthermore, the
box-PF is about ten times faster than NBP (see Table 1).

Fig. 10 A scenario with 100 sensors and 9 anchors
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Fig. 11 The corresponding graph for R = L/4

Table 1 Simulation results
Algorithm Error (%) No of particles Time (s)
Box-BP 2.11 9 14.54
NBP 2.08 200 159.4

Fig. 12 Results for NBP algorithm

Figures 12 and 13 illustrate the results obtained for NBP and box-BP respectively. The dots denote the true
sensors positions whereas the lines indicate the error on these positions.

7.2 Random Placement of the Anchors

Next, we test both message-passing algorithms on different anchor layouts. Rather than placing the anchors in a
grid-like position so as to enclose the randomly spread sensors, the anchors are placed randomly as shown in Fig. 14.

We also study the performance of the localization algorithms while varying the number of anchors within the
range 6–9. The results are grouped in Tables 2 and 3 for the Box-Bp and the NBP respectively.

Table 2 shows that the novel box-BP algorithm presents comparable results in term of the RMSE for different
number of anchors. However, this error rate is achieved within less time, i.e. less iterations, if the number of anchors
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Fig. 13 Results for box-BP algorithm

Fig. 14 A scenario with 100 sensors and 9 randomly spread anchors. The anchors are marked as circles

Table 2 Results fo box-BP algorithm

No of anchors 6 7 8 9
No of particles 9 9 9 9
Error (%) 2.53 2.08 2.08 2.06
Time (s) 22.80 22.87 15.72 14.27

Table 3 Results for the NBP algorithm

No of anchors 6 7 8 9
No of particles 200 200 200 200
Error (%) 6.89 11.05 12.23 10.72
Time (s) 244.33 299.96 220.41 220.87

is increased. The only condition is to have the anchors uniformly deployed across the region. Figure 15 shows the
results obtained using box-BP and a layout with six anchors.

The NBP turned out to be more sensitive to the anchors layout. Figure 16 shows the results obtained using the
NBP algorithm for a six anchor layout. It can be seen that the sensors on the edge of the region could not be well
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Fig. 15 Results for the box-BP algorithm for six anchors

Fig. 16 Results for the NBP algorithm for six anchors

positioned. The error on the position of some of these is around L/3. This huge error implies a large value of the
RMSE as it can be seen in Table 3. This was observed for all layouts defined by different anchor number.

8 Conclusion

In this paper, we introduced a message-passing algorithm that uses interval representations of probability quantities
to infer on arbitrary graphical models. The simulation results showed that for a grid-like placement of the anchors
the estimation accuracy provided by NBP algorithm is achieved by the novel box-BP algorithm using much less
particles and within less computational time. For a random placement of the anchors, the NBP algorithm failed
to accurately locate sensors on the edge of the network. The box-BP provided in this case more accurate results.
The advantages offered by the new algorithm are reducing the required storage memory, bandwidth and energy
needed to exchange information between nodes of a network. Another advantage is decreasing the complexity of
the computations and the computational time.

However, in this paper, a parallel update scheme was adopted. In this sense, at each iteration, each node sends
information to all of its neighbors simultaneously. An interesting subject is the problem of finding an optimal
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message-passing order, or an optimal path for the exchanged information, for which the message-passing algorithm
gives a reasonable approximation of the posterior marginal of interest. Furthermore, the application we considered
is described by a time independent static model. In fact, dynamic graphical models, namely dynamic Bayesian
networks, theory does exist. The structure of this graphical model encodes conditional independence properties
between the variables of the model in each time step and also across time steps. This representation is especially
useful when reasoning about a system whose state changes over time [22]. The mapping problem is such an example
because it involves moving robots whose positions change over time. The application of message-passing procedures
to infer in such problems also offers an interesting research subject.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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