114 research outputs found

    Selective phenotyping, entropy reduction, and the mastermind game.

    Get PDF
    BACKGROUND: With the advance of genome sequencing technologies, phenotyping, rather than genotyping, is becoming the most expensive task when mapping genetic traits. The need for efficient selective phenotyping strategies, i.e. methods to select a subset of genotyped individuals for phenotyping, therefore increases. Current methods have focused either on improving the detection of causative genetic variants or their precise genomic location separately. RESULTS: Here we recognize selective phenotyping as a Bayesian model discrimination problem and introduce SPARE (Selective Phenotyping Approach by Reduction of Entropy). Unlike previous methods, SPARE can integrate the information of previously phenotyped individuals, thereby enabling an efficient incremental strategy. The effective performance of SPARE is demonstrated on simulated data as well as on an experimental yeast dataset. CONCLUSIONS: Using entropy reduction as an objective criterion gives a natural way to tackle both issues of detection and localization simultaneously and to integrate intermediate phenotypic data. We foresee entropy-based strategies as a fruitful research direction for selective phenotyping

    Computation of elementary modes: a unifying framework and the new binary approach

    Get PDF
    BACKGROUND: Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. RESULTS: We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. CONCLUSIONS: The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks

    Modular decomposition of protein-protein interaction networks

    Get PDF
    We introduce an algorithmic method, termed modular decomposition, that defines the organization of protein-interaction networks as a hierarchy of nested modules. Modular decomposition derives the logical rules of how to combine proteins into the actual functional complexes by identifying groups of proteins acting as a single unit (sub-complexes) and those that can be alternatively exchanged in a set of similar complexes. The method is applied to experimental data on the pro-inflammatory tumor necrosis factor-α (TNF-α)/NFκB transcription factor pathway

    Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model

    Get PDF
    Hidden Markov models (HMMs) have been extensively used to dissect the genome into functionally distinct regions using data such as RNA expression or DNA binding measurements. It is a challenge to disentangle processes occurring on complementary strands of the same genomic region. We present the double-stranded HMM (dsHMM), a model for the strand-specific analysis of genomic processes. We applied dsHMM to yeast using strand specific transcription data, nucleosome data, and protein binding data for a set of 11 factors associated with the regulation of transcription. The resulting annotation recovers the mRNA transcription cycle (initiation, elongation, termination) while correctly predicting strand-specificity and directionality of the transcription process. We find that pre-initiation complex formation is an essentially undirected process, giving rise to a large number of bidirectional promoters and to pervasive antisense transcription. Notably, 12% of all transcriptionally active positions showed simultaneous activity on both strands. Furthermore, dsHMM reveals that antisense transcription is specifically suppressed by Nrd1, a yeast termination factor

    Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle

    Get PDF
    DNA replication, transcription and repair involve the recruitment of protein complexes that change their composition as they progress along the genome in a directed or strand-specific manner. Chromatin immunoprecipitation in conjunction with hidden Markov models (HMMs) has been instrumental in understanding these processes, as they segment the genome into discrete states that can be related to DNA-associated protein complexes. However, current HMM-based approaches are not able to assign forward or reverse direction to states or properly integrate strand-specific (e.g.,RNA expression) with non-strand-specific (e.g.,ChIP) data, which is indispensable to accurately characterize directed processes. To overcome these limitations, we introduce bidirectional HMMs which infer directed genomic states from occupancy profiles de novo. Application to RNA polymerase II-associated factors in yeast and chromatin modifications in human T cells recovers the majority of transcribed loci, reveals gene-specific variations in the yeast transcription cycle and indicates the existence of directed chromatin state patterns at transcribed, but not at repressed, regions in the human genome. In yeast, we identify 32 new transcribed loci, a regulated initiation-elongation transition, the absence of elongation factors Ctk1 and Paf1 from a class of genes, a distinct transcription mechanism for highly expressed genes and novel DNA sequence motifs associated with transcription termination. We anticipate bidirectional HMMs to significantly improve the analyses of genome-associated directed processes

    Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    Get PDF
    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression

    Dynamic Regulation by Polycomb Group Protein Complexes Controls Pattern Formation and the Cell Cycle in Drosophila

    Get PDF
    SummaryPolycomb group (PcG) proteins form conserved regulatory complexes that modify chromatin to repress transcription. Here, we report genome-wide binding profiles of PhoRC, the Drosophila PcG protein complex containing the DNA-binding factor Pho/dYY1 and dSfmbt. PhoRC constitutively occupies short Polycomb response elements (PREs) of a large set of developmental regulator genes in both embryos and larvae. The majority of these PREs are co-occupied by the PcG complexes PRC1 and PRC2. Analysis of PcG mutants shows that the PcG system represses genes required for anteroposterior, dorsoventral, and proximodistal patterning of imaginal discs and that it also represses cell cycle regulator genes. Many of these genes are regulated in a dynamic manner, and our results suggest that the PcG system restricts signaling-mediated activation of target genes to appropriate cells. Analysis of cell cycle regulators indicates that the PcG system also dynamically modulates the expression levels of certain genes, providing a possible explanation for the tumor phenotype of PcG mutants

    Yeast Growth Plasticity Is Regulated by Environment-Specific Multi-QTL Interactions

    Get PDF
    For a unicellular, non-motile organism like Saccharomyces cerevisiae, carbon sources act both as nutrients and as signaling molecules and consequently affect various fitness parameters including growth. It is therefore advantageous for yeast strains to adapt their growth to carbon source variation. The ability of a given genotype to manifest different phenotypes in varying environments is known as phenotypic plasticity. To identify quantitative trait loci (QTL) that drive plasticity in growth, two growth parameters (growth rate and biomass) were measured in a published dataset from meiotic recombinants of two genetically divergent yeast strains grown in different carbon sources. To identify QTL contributing to plasticity across pairs of environments, gene-environment interaction mapping was performed, which identified several QTL that have a differential effect across environments, some of which act antagonistically across pairs of environments. Multi-QTL analysis identified loci interacting with previously known growth affecting QTL as well as novel two-QTL interactions that affect growth. A QTL that had no significant independent effect was found to alter growth rate and biomass for several carbon sources through two-QTL interactions. Our study demonstrates that environment-specific epistatic interactions contribute to the growth plasticity in yeast. We propose that a targeted scan for epistatic interactions, such as the one described here, can help unravel mechanisms regulating phenotypic plasticity

    Determinants of RNA metabolism in the Schizosaccharomyces pombe genome

    Get PDF
    To decrypt the regulatory code of the genome, sequence elements must be defined that determine the kinetics of RNA metabolism and thus gene expression. Here, we attempt such decryption in an eukaryotic model organism, the fission yeast S. pombe. We first derive an improved genome annotation that redefines borders of 36% of expressed mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combine RNA labeling invivo with mathematical modeling to obtain rates of RNA synthesis and degradation for 5,484 expressed RNAs and splicing rates for4,958 introns. We identify functional sequence elements inDNA and RNA that control RNA metabolic rates and quantifythecontributions of individual nucleotides to RNA synthesis,splicing, and degradation. Our approach reveals distinct kineticsof mRNA and ncRNA metabolism, separates antisense regulation by transcription interference from RNA interference, and provides a general tool for studying the regulatory code of genomes
    • …
    corecore