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SUMMARY

Polycomb group (PcG) proteins form conserved reg-
ulatory complexes that modify chromatin to repress
transcription. Here, we report genome-wide binding
profiles of PhoRC, the Drosophila PcG protein com-
plex containing the DNA-binding factor Pho/dYY1
and dSfmbt. PhoRC constitutively occupies short
Polycomb response elements (PREs) of a large set
of developmental regulator genes in both embryos
and larvae. The majority of these PREs are co-occu-
pied by the PcG complexes PRC1 and PRC2. Analy-
sis of PcG mutants shows that the PcG system
represses genes required for anteroposterior, dorso-
ventral, and proximodistal patterning of imaginal
discs and that it also represses cell cycle regulator
genes. Many of these genes are regulated in a dy-
namic manner, and our results suggest that the
PcG system restricts signaling-mediated activation
of target genes to appropriate cells. Analysis of cell
cycle regulators indicates that the PcG system also
dynamically modulates the expression levels of cer-
tain genes, providing a possible explanation for the
tumor phenotype of PcG mutants.

INTRODUCTION

Polycomb group (PcG) genes encode an evolutionary conserved

set of transcriptional repressors that are essential for the devel-

opment of animals and plants (reviewed in Schubert et al., 2005;

Pien and Grossniklaus, 2007; Schwartz and Pirrotta, 2007;

Schuettengruber et al., 2007). PcG genes were originally identi-

fied in Drosophila as a set of loci that share a common mutant

phenotype, the misexpression of multiple HOX genes in cells

where they are normally inactive (Duncan, 1982; Jürgens,

1985). To date, HOX genes are the best characterized target

genes of the PcG system in Drosophila but over the years several

additional genes have been found to be misexpressed in PcG

mutants (Dura and Ingham, 1988; Busturia and Morata, 1988;

Beuchle et al., 2001; Maurange and Paro, 2002; Zirin and

Mann, 2004; Janody et al., 2004). In vertebrates, PcG proteins
Developm
also repress HOX genes, but early studies showed that mamma-

lian PcG proteins also repress the cell cycle regulator p16/INK4a

(Jacobs et al., 1999). More recently, genome-wide PcG protein

binding profiles in mammalian tissue culture cells (Kirmizis

et al., 2004; Bracken et al., 2006; Squazzo et al., 2006) and in em-

bryonic stem cells (Boyer et al., 2006; Lee et al., 2006) showed

that these proteins bind to a large number of developmental con-

trol genes. These studies led to the proposal that PcG repression

of developmental control genes may be required for maintaining

stem cell pluripotency (Boyer et al., 2006; Lee et al., 2006), a view

that needs to be kept in perspective because embryonic stem

cells lacking PcG proteins maintain their pluripotent state for

many cell generations (Chamberlain et al., 2008).

Biochemical analyses of PcG proteins revealed that they exist

in distinct multimeric protein complexes that contain two or more

different PcG proteins (reviewed in Müller and Kassis, 2006;

Schuettengruber et al., 2007; Schwartz and Pirrotta, 2007).

Three principal PcG protein complexes have been characterized

to date: Polycomb repressive complex 1 (PRC1), containing E3

ligase activity for ubiquitylation of histone H2A at lysine 119

(Shao et al., 1999; Wang et al., 2004a; Buchwald et al., 2006);

Polycomb repressive complex 2 (PRC2), a histone methyltrans-

ferase that methylates H3 at lysine 27 (Cao et al., 2002; Czermin

et al., 2002; Kuzmichev et al., 2002; Müller et al., 2002); and Pho

repressive complex (PhoRC) (Klymenko et al., 2006). Of these

three complexes, only PhoRC contains a sequence-specific

DNA-binding protein that is essential for PcG repression: Pho,

the Drosophila homolog of YY1 (Brown et al., 1998; Klymenko

et al., 2006). Nevertheless, at least at HOX genes in Drosophila,

all three complexes cobind in a sharply localized manner to

specific DNA sequences that are called Polycomb response

elements (PREs) (Papp and Müller, 2006). Targeting of PRC1

and PRC2 to HOX gene PREs requires Pho function, as seen in

pho mutant animals (Wang et al., 2004b) or upon disruption of

Pho DNA-binding sites (Klymenko et al., 2006). In addition

to Pho, a variety of other DNA-binding proteins have been pro-

posed to function as PRC1 and/or PRC2 recruitment factors at

Drosophila PREs (reviewed in Müller and Kassis, 2006). How-

ever, mutants lacking those proteins do not show misexpression

of HOX genes or other PcG phenotypes (reviewed in Müller and

Kassis, 2006). In vertebrates, YY1 has been reported to interact

with PRC2 (Satijn et al., 2001) and has been implicated in PRC2

recruitment to certain target genes (Caretti et al., 2004), while
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a noncoding RNA has been implicated in PRC2 targeting to HOX

genes (Rinn et al., 2007).

Recent studies reported genome-wide binding profiles of

Drosophila PRC1 and PRC2 components (Negre et al., 2006;

Schwartz et al., 2006; Tolhuis et al., 2006; reviewed in Ringrose

and Paro, 2007). Specifically, Schwartz et al. (2006) reported

that, in tissue culture cells, PRC1 and PRC2 components tightly

colocalize at about 200 genes in the entire Drosophila genome.

Studies using the DamID technique in tissue culture cells also

found a good correlation between regions occupied by PRC1

and PRC2 components (Tolhuis et al., 2006). Negre et al.

(2006), finally, analyzed binding of PRC1 components in

Drosophila embryos, pupae and adults, using an array platform

that covered approximately 10% of the genome. This study re-

vealed a strong coincidence between binding sites for two differ-

ent PRC1 components (Negre et al., 2006). Taken together,

these studies thus provided a comprehensive catalog of PRC1

and PRC2 binding sites in tissue culture cells and a first partial

map of PRC1 binding sites in developing Drosophila.

Although these studies made important contributions toward

identifying possible PcG target genes, many central questions

remain unresolved. First, the PRC1- and PRC2-bound regions

identified in ChIP-chip studies (Negre et al., 2006; Schwartz

et al., 2006; Tolhuis et al., 2006) show only a limited overlap

with in silico PRE predictions based on the presence of binding

site motifs for Pho and other DNA-binding proteins (Ringrose

et al., 2003). This raises the question where the DNA-binding

PcG complex PhoRC binds. Second, apart from the few well-

characterized PREs that have been analyzed to date, there is

only limited information about the DNA sequences that are

bound by PcG protein complexes, and the sequence motifs

that make up PREs are thus still largely elusive. Finally, and per-

haps most importantly, even though PRC1 and PRC2 were found

to bind at a large number of genes, it is still largely unknown if and

how these genes are regulated by the PcG system. Here, we de-

termined the genome-wide binding profile of PhoRC at different

stages of Drosophila development. Our study identifies a large

set of genomic sites where PhoRC is constitutively bound

together with PRC1 and PRC2, establishing PhoRC as a core-

PRE-binding complex. Functional analyses in PcG mutants re-

veal that the PcG system represses many of the identified target

genes and, unexpectedly, that PcG repression at several of

these genes is dynamic and can be overcome in response to ex-

tracellular signaling.

RESULTS

To identify genes that are bound by PhoRC in developing

Drosophila, we generated genome-wide binding profiles of two

PhoRC components: Pho and dSfmbt. Specifically, we analyzed

binding of Pho protein in 6- to12-hour-old embryos by perform-

ing chromatin immunoprecipitation (ChIP) assays with two inde-

pendent antisera that had been raised against distinct portions of

the Pho protein. Only genomic regions significantly enriched by

both anti-Pho antibodies were considered. In parallel, we also

analyzed Pho and dSfmbt binding at later developmental stages.

To this end, we performed ChIP assays with the two Pho antisera

and with an antibody against dSfmbt in imaginal disc cells iso-

lated from third instar larvae. In all cases, the immunoprecipi-
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tated material was hybridized to high-density whole-genome

tiling arrays and analyzed using TileMap (Ji and Wong, 2005) to

identify a high-confidence set of Pho- and dSfmbt-bound re-

gions, using a stringent cutoff (see Experimental Procedures).

PhoRC Binding at Target Genes Is Sharply Localized
These experiments resulted in three high resolution in vivo bind-

ing maps of the two PhoRC complex components: 407 genomic

regions bound by Pho in embryos (PhoE; see Table S1 available

online), 670 regions bound by Pho in larval imaginal discs (PhoL;

Table S2) and 666 regions bound by dSfmbt in larval imaginal

discs (dSfmbtL; Table S3). In all three binding profiles, the geno-

mic intervals with enriched binding were on average 1100–1600

bp in length with few regions bound by either protein across

more extended chromosomal regions (Figure 1A). Pho and

dSfmbt are thus more frequently bound at discrete short cis-reg-

ulatory sequences.

Comparison of PhoE and PhoL binding profiles identified 236

regions in common (Figure 1B), corresponding to chromosomal

sequences where Pho is constitutively bound during embryonic

and larval stages. To identify regions specifically bound by

PhoRC, as opposed to Pho alone, we next compared the binding

profiles in PhoL versus dSfmbtL, which revealed that 50% of re-

gions are cobound by both Pho and dSfmbt proteins in larvae

(Figure 1C). These 338 regions thus represent sequences bound

by the PhoRC complex in imaginal discs. Importantly, among

those, 196 regions (58%) correspond to regions also bound by

Pho in embryos, suggesting that these regions are occupied

by PhoRC throughout development. We refer to these 196 re-

gions as the core-PhoRC binding sites (Table S4). Notably, these

core-PhoRC sites include previously characterized PREs in the

Bithorax complex (BXC), engrailed and polyhomeotic genes

(Figure S1).

Genome-wide Cotargeting of PhoRC, PRC1, and PRC2
To determine the overlap between PhoRC, PRC1, and PRC2 tar-

get sites, we compared the 196 core-PhoRC binding sites with

PRC1- and PRC2-bound regions identified through genome-

wide binding studies in Drosophila S2 cells (Schwartz et al.,

2006; M. Biggin and V. Pirrotta, personal communication). Con-

sidering the differences in experimental conditions (developing

embryos and larvae presented here versus tissue culture cell

lines), there is a significant degree of overlap: 88 of the 196

core-PhoRC binding sites were also identified as bound by

PRC1 and PRC2 (45%) (Figure S2A). A substantial number of

core-PhoRC binding sites thus correspond to PRC1 and PRC2

target sites, supporting the view that PhoRC is a central PRE-

binding complex.

An Extended Pho-Binding Motif as PRE Signature
We next asked whether the chromosomal intervals identified by

Pho or dSfmbt ChIP-chip are enriched for particular DNA se-

quence motifs. To this end, we performed de novo sequence

motif discovery on the PhoE-, PhoL-, dSfmbtL-bound regions

and on the 196 core-PhoRC regions. Several 8-mers, based on

a GCCAT core were significantly overrepresented in the Pho da-

tasets and were used as the basis to reconstruct a position se-

quence-specific matrix (PSSM; Figure 2A). This sequence,

GC/A
C/GGCCATT/CTT, closely matches the motif previously
evier Inc.
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identified in vitro as an optimal Pho-binding site using electro

mobility shift assays (Brown et al., 1998; Fritsch et al., 1999; Shi-

mell et al., 2000; Mishra et al., 2001). However, our in vivo binding

data suggest a more extensive Pho-binding motif containing an

additional Guanine nucleotide at the �3 position and a Thymine

pair at positions +7 and +8 (Figure 2A). This extended Pho-bind-

ing motif is enriched in all data sets (Figure 2B). However, it is

Figure 1. Pho and dSfmbt Cobind Short cis-Regulatory Regions in

Embryos and Imaginal Discs

(A) Cumulative size distribution of TileMap reported regions bound by Pho or

dSfmbt. PhoE, PhoL, and dSfmbtL data sets are indicated in blue, purple,

and green, respectively. A position (x,y) on the curve represents the proportion

y (in percent) of regions of size x or more. Note that the median size (obtained

for y = 50%) of regions enriched by ChIP lies between 1100 and 1600 bp for all

three data sets. Not more than 10% of the regions are longer than 3kb.

(B) Venn diagram showing the overlap of regions bound by Pho in embryos

(PhoE) and in imaginal discs (PhoL).

(C) Venn diagram showing the overlap of regions cobound by Pho (PhoL) and

dSfmbt (dSfmbtL) in imaginal discs.
Develop
noteworthy that we failed to identify the Pho-binding site as an

overrepresented motif in the subset of dSfmbtL regions not

bound by Pho (i.e., the 328 dSfmbtL regions shown in

Figure 1C) (data not shown). The lack of Pho enrichment by

ChIP and the absence of detectable Pho binding sites in this

fraction of the dSfmbtL dataset indicate that dSfmbt is targeted

to these regions independently of Pho.

Having generated this refined motif, we next assayed the num-

ber of Pho motifs per PRE. While many regions among the 196

core-PhoRC binding sites contain multiple Pho-binding motifs

(Figure 2C), several bound regions contain only a single recog-

nizable Pho-binding motif. Previous in vitro studies with re-

combinant proteins reported that Pho directly recruits PRC1 to

the bxd PRE in the HOX gene Ubx, and it was proposed that

cooperative assembly of such a ‘‘silenceosome’’ requires two

appropriately juxtaposed and oriented Pho binding sites

(Mohd-Sarip et al., 2005, 2006). However, when we measured

the distance between Pho-binding motifs in our PhoE and PhoL

data sets, we were unable to detect any specific constraints

for distance or strand orientation between computationally iden-

tified GCCAT motifs (data not shown). It is possible that Pho

bound at canonical sites cooperates with Pho bound to sites

with imperfect matches to this consensus to recruit PRC1 by

the mechanism proposed by Mohd-Sarip et al. (2005, 2006).

Alternatively, there may be multiple modes of PRC1 recruitment

by PhoRC and/or other factors (e.g., Horard et al., 2000) and the

mechanism may differ, depending on sequence context.

In addition, we also compared PhoRC datasets with the re-

ported binding profiles for Zeste in Drosophila embryos (Moses

et al., 2006) and GAGA factor/Trithorax-like (GAF/Trl) in S2 cells

(Lee et al., 2008). Previous studies had implicated Zeste and

GAF/Trl in PRE binding (reviewed in Müller and Kassis, 2006).

We found significant overlap in the PhoRC and GAF/Trl binding

profiles (Figure S2B) but only little overlap in the Pho and Zeste

binding profiles (Figure S2C). GAF/Trl but not Zeste thus appears

to be bound at many PhoRC-bound PREs. In concordance with

these binding data, we also identified GAF/Trl-binding motifs

(GAGAG) enriched in PhoRC regions using de novo motif discov-

ery (data not shown). Finally, we used a pattern-match approach

to examine PhoRC data sets for enrichment of binding motifs for

Grainyhead (Grh), Dsp1, and Sp1/KLF, all of which had been re-

ported to bind to PRE DNA in case studies (Brown et al., 2005;

Dejardin et al., 2005; Blastyák et al., 2006). Grh binding sites

are enriched in all PhoRC bound regions (Figure S2D), but we

have not been able to identify this motif by de novo discovery.

Dsp1 and Sp1/KLF binding sites have low sequence complexity;

they are present in PhoRC-bound regions but not enriched

(Figure S2D). In summary, these in silico analyses identified a re-

fined and extended Pho-binding site together with GAF/Trl bind-

ing sites as the signature of PhoRC-bound PREs.

Most PREs Are Located Close to Transcription
Start Sites
By analyzing the location of the PhoE-, PhoL-, and dSfmbtL-

bound regions with respect to transcription start sites (TSS),

we found that in all three cases the majority of the regions lies

within ±1 kb from the nearest TSS and that there is a significant

enrichment of binding between ±500 bp compared to a random

dataset (Figures S3 and 2D).
mental Cell 15, 877–889, December 9, 2008 ª2008 Elsevier Inc. 879
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Figure 2. Properties of PhoRC-Bound PREs
(A) Identification of an extended Pho-binding motif in genomic regions bound by Pho in ChIP. Depicted is the sequence logo generated from a position sequence-

specific matrix (PSSM). See Supplemental Data for details.

(B) Pho-binding site prediction enrichment in bound regions in the PhoE (blue), PhoL (purple), dSfmbtL (green), and core-PhoRC (magenta) datasets. Enrichment in

Pho-binding site prediction is computed as the ratio of the PSSM (presented above) match frequency in the dataset under test and the global genome frequency.

Significance is assessed using a binomial test (right test, 95% confidence). PhoRC-bound regions show more often Pho-binding sites than expected by chance.

(C) Number of Pho-binding site predictions per region in the core-PhoRC dataset (magenta) and in simulated random regions (gray). Significance is assessed

using Monte Carlo simulation. Reported values for random data correspond to the mean and the standard deviation.

(D) Enrichment of bound region locations in the PhoE (blue), PhoL (purple), and dSfmbtL (green) data sets with respect to the closest transcription start site (TSS).

x axis represents distance to the closest TSS, and y axis represents enrichment over random expectation, assuming a uniform distribution of the positions in the

genome. Smoothened estimate of the enrichment (moving average) in blue, purple, and green show enrichment over background (values greater than 1). 95%

confidence intervals (CIs) in gray show significant enrichment for all three data sets in a zone of about ±500 bp around TSS.
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The promoter-proximal location that we uncovered allowed us

to readily link the PREs to their potential target genes. Genes en-

coding developmental regulators are highly overrepresented

among PcG targets (Tables S1–S7). Noteworthy, the majority

of these target genes contain a single PRE (Figure S4). Table

S4 lists core-PhoRC target genes and indicates if they were pre-

viously identified as PcG targets in S2 cells (Schwartz et al.,

2006).

PcG Control of Body Patterning through
Repression of Developmental Regulators
We next explored whether and how the PcG system regulates

the identified target genes. In a first set of experiments, we

focused our analyses on the patterning genes engrailed (en),

apterous (ap), pannier (pnr), teashirt (tsh), Distall-less (Dll),

even-skipped (eve), and Dorsocross (Doc). These genes are

bound by Pho in embryos, by PhoRC in imaginal discs, and by

PRC1 and PRC2 in tissue culture cells (Tables S1–S4; Schwartz

et al., 2006).

To validate and extend our microarray data, we performed

ChIP assays followed by real-time quantitative PCR (qPCR)

analysis to monitor binding of the PhoRC subunits Pho and

dSfmbt, the PRC2 subunit Su(z)12 and the PRC1 subunits Pc

and Ph at these genes in imaginal disc cells. At each gene, we

analyzed binding of PhoRC, PRC1, and PRC2 at (1) the identified

PRE(s) and (2) at a region within the transcribed portion of the

gene. Additional euchromatic and heterochromatic sequences

served as further controls (control 1 and 2). These assays re-

vealed that not only PhoRC but also PRC1 and PRC2 are local-

ized at the PRE of each of these genes (Figures 3 and 4). Like the

PhoRC components Pho and dSfmbt, Ph and Su(z)12 are also

specifically localized at PREs of these genes but not at the ana-

lyzed intervals of the coding regions (Figures 3 and 4). In con-

trast, Pc protein shows highest binding at PREs, but there is

also significant low-level binding detected at the analyzed cod-

ing region in several target genes (Figure 3), consistent with ear-

lier studies (Papp and Müller, 2006; Schwartz et al., 2006). Taken

together, these results demonstrate that PhoRC, PRC1, and

PRC2 are cobound to the PREs of each of these target genes

in larval cells.

We next analyzed if PcG protein complexes repress transcrip-

tion of these target genes. Previous studies reported misexpres-

sion of en, eve, and tsh in certain PcG mutants (Dura and Ingham,

1988; Busturia and Morata, 1988; Moazed and O’Farrell, 1992;

Janody et al., 2004; Zirin and Mann, 2004). Here, we systemati-

cally removed different PhoRC, PRC1, or PRC2 subunits in larval

cells and then tested whether target genes become misex-

pressed in cells where they are normally not expressed. Specif-

ically, we generated clones of cells homozygous for a given PcG

loss-of-function mutation in wing imaginal discs and analyzed

mutant clone cells for misexpression of target genes by antibody

staining (see Figure 3).

en, ap, pnr, tsh, and Dll all encode transcription factors that are

expressed in specific compartments of the wing imaginal disc

where their presence is essential for the correct patterning and

growth of the disc (Figure 3, top row). en and ap control growth

and patterning along the anteroposterior (A/P) and dorsoventral

(D/V) axis, respectively, whereas pnr, tsh, and Dll control the sub-

division of the wing disc along the proximodistal (P/D) axis to
Develop
generate primordia for notum, hinge, and wing blade (reviewed

in Mann and Morata, 2000). As illustrated in Figure 3, upon re-

moval of PcG proteins, these target genes indeed become mis-

expressed in territories of the disc where they are normally not

expressed. However, similar to HOX genes (Beuchle et al., 2001),

the extent to which repression of these target genes is lost and

the kinetics of derepression depend on which PcG protein is

removed (Figures 3 and S5). Generally, Psc-Su(z)2 or ph mutant

clones show the most rapid and widespread loss of target gene

repression, whereas removal of the other PRC1 subunits Pc,

Sce, or Scm results in a more delayed loss of repression, and

clones lacking the PRC2 components E(z) or Su(z)12 show an

even further delayed loss of repression (Beuchle et al., 2001;

Birve et al., 2001). Nevertheless, we also found examples where

target genes are strongly misexpressed in clones lacking certain

PcG proteins but show no detectable misexpression in clones

lacking other PcG proteins (see Figures 3 and S5 legends for de-

tails). This indicates that even though PhoRC, PRC1, and PRC2

are all cotargeted to these genes (Figure 3), certain PcG compo-

nents appear to be less stringently required for their repression

than others, at least in the tissues analyzed here.

This analysis uncovered another important aspect that is rele-

vant for analyzing PcG regulation of target genes. We found that

misexpression of certain target genes cannot be straightfor-

wardly monitored in PcG single mutants because it is masked

by other regulatory interactions. For example, the HOX proteins

Ubx, Abd-A and Abd-B are known to repress Dll transcription in

embryos (Vachon et al., 1992), and all three HOX proteins are

strongly misexpressed in PcG mutant cells in the wing disc

(Beuchle et al., 2001). Consequently, we found that PcG sin-

gle-mutant clones show complete loss of Dll expression (Figures

3 and S5) and that misexpression of Dll in PcG mutant clones is

only revealed in clones lacking both PcG and HOX gene func-

tions (i.e., in clones of Scm Ubx abd-A Abd-B quadruple mutant

cells, Figure 3). Similarly, ectopic expression of the HOX protein

Ubx activates tsh expression outside its normal expression

domain in embryos (Röder et al., 1992), raising the question

whether the reported misexpression of tsh in PcG mutant clones

in discs (Zirin and Mann, 2004) might be indirectly activated by

misexpressed HOX proteins. However, repression of tsh is also

lost in Scm mutant clones lacking the three HOX proteins Ubx,

Abd-A, and Abd-B (Figure 3). Taken together with the in vivo

binding data, misexpression of tsh in Scm mutant clones is

thus most likely a direct consequence of loss of PcG repression

at the tsh locus.

In summary, these experiments provide strong evidence that

the PcG system not only controls the subdivision of segments

into A/P compartments via en repression but also controls the

D/V subdivision by repressing ap, and the P/D subdivision by

repressing the pnr, tsh and Dll genes. Finally, we note that the

transcription factor Eve, which is normally expressed in a subset

of cells in the genital disc (Gorfinkiel et al., 1999), becomes mis-

expressed in ph and Psc-Su(z)2 mutant clones in the wing disc

(Figure 3).

Global, Tissue-Specific, and Cell-Type-Specific
Repression by the PcG System
The misexpression of tsh, eve, and Doc in ph or Psc-Su(z)2 mu-

tant embryos shown in Figure 4 illustrates how the PcG system is
mental Cell 15, 877–889, December 9, 2008 ª2008 Elsevier Inc. 881
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Figure 3. Control of Drosophila Limb Patterning by the PcG System

(Top) ChIP analysis at the en, ap, pnr, tsh, Dll, and eve loci in wild-type imaginal discs. Each bar shows the result from at least three independent immunopre-

cipitation reactions on independently prepared batches of chromatin, performed with the indicated antibodies against Ph, Pc, Su(z)12, dSfmbt, or Pho. ChIP

signals at PREs (dark purple boxes) and other regions (distances from transcription start sites indicated in kb) are presented as percentage of input chromatin

precipitated for each region, error bars correspond to standard deviation. Note that at tsh, PhoRC, PRC1, and PRC2 components are bound at the +15 kb PRE

but not at the +19 kb PRE where these complexes are bound in embryos (compare to Figure 4). Similarly, at eve, PcG protein complexes are bound at the +9.1 kb

PRE but not at the promoter proximal �0.2 kb PRE where these complexes are bound in embryos (compare to Figure 4).

882 Developmental Cell 15, 877–889, December 9, 2008 ª2008 Elsevier Inc.
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used in different ways to restrict target gene expression. tsh is

misexpressed in many different tissues in every segment in ph

or Psc-Su(z)2 mutants (Figure 4). This misexpression is probably

activated by different tissue-specific enhancer-binding proteins

that are present in every segment along the anteroposterior

body axis but normally only activate tsh transcription within its

appropriate expression domain. Consequently, tsh becomes

globally expressed if PcG function is removed (Figure 4). At the

eve locus, the situation is different. In ph or Psc-Su(z)2 mutant

embryos, eve is misexpressed in most if not all cells of the ner-

vous system but there is only subtle misexpression in the epider-

mis and mesoderm (Figure 4, cf. Dura and Ingham, 1988). At eve,

the primary function of the PcG system therefore seems to be to

restrict expression to a specific subset of cells within a particular

tissue, i.e., by preventing global neuronal-specific transcription

factors from activating eve transcription throughout the nervous

system. Doc, finally, is initially expressed in ectodermal and me-

sodermal cells on the dorsolateral side of wild-type embryos and

expression subsequently becomes restricted to two pairs of car-

dioblast cells in the mesoderm of every segment (Figure 4; Reim

et al., 2003). In ph or Psc-Su(z)2 mutants, this restriction fails to

occur, and Doc expression is maintained at high levels in the dor-

solateral epidermis (Figure 4). At Doc, the PcG system is thus re-

quired to efficiently turn off transcription in a subset of cells in

which it was initially active.

A final point worth noting in this context comes from the anal-

ysis of PRE occupancy at different developmental stages. At the

tsh and eve loci, PcG protein complexes assemble at different

PREs within these genes during embryonic and larval stages

(Figures 3 and 4). This suggests that PcG complexes repress

tsh and eve transcription through different PREs during these

two distinct stages of the life-cycle (Figures 3 and 4).

PcG Control of Cell Division and Cell Growth
Clones of Psc-Su(z)2 or ph mutant cells in imaginal discs show

tumor-like phenotypes that are characterized by unrestricted

cell proliferation and a failure to exit the cell cycle at the end of

larval development (Beuchle et al., 2001). We wondered whether

any of the identified PcG target genes might give us a better un-

derstanding of the molecular basis of this phenotype. To better

characterize the tumor phenotype of Psc-Su(z)2 or ph mutant

(Below) Misexpression of patterning genes in PcG mutant cell clones in wing imaginal discs. Row 1: discs from wild-type (wt) third instar larvae stained with an-

tibodies to detect expression of en, ap, pnr, tsh, Dll, and eve as indicated (magenta in each case) and costained with Hoechst (blue) to visualize nuclei. Rows 2 and

3: discs with clones of cells that are homozygous for the indicated PcG mutations; mutant cells are marked by absence of GFP. en: in wt animals, expression is

confined to the posterior compartment (P) and not detected in the anterior compartment (A). en is misexpressed in most ph and many dSfmbt mutant clones in the

anterior compartment (arrowheads) but consistently remains repressed in dSfmbt clones in the presumptive wing blade (empty arrowhead). ap: in wt animals, ap

expression is restricted to the dorsal compartment (D) and is absent in the ventral compartment (V). ap is misexpressed in Scm mutant clones in the ventral com-

partment (arrowheads); misexpression is more widespread Scm BXC mutant clones also lacking the products of the three Bithorax complex genes Ubx, abd-A

and Abd-B. pnr: in wt animals, pnr expression is confined to the notum (N), and it is not expressed in the hinge and wing blade. pnr is misexpressed in Psc-Su(z)2

and ph mutant clones in hinge and wing blade cells (arrowheads). tsh: in wt animals, tsh expression is confined to the notum (N) and hinge (H), and it is not ex-

pressed in the wing blade. tsh is misexpressed in Scm mutant clones in the wing blade (arrowheads); slightly less extensive misexpression is observed in Scm

BXC mutant clones, suggesting that misexpressed HOX proteins contribute to tsh activation in Scm mutant clones. Dll: in wt animals, Dll expression is confined to

wing blade (W) cells and it is not expressed in the notum and hinge. Dll expression is lost in Scm single mutant clones (empty arrowheads) but is restored in Scm

BXC mutant clones, and Dll is misexpressed in a subset of clone cells in a specific region of the hinge (arrowhead). eve: in wt animals, eve is not expressed in the

wing disc. eve is misexpressed in all Psc-Su(z)2 and ph mutant clones throughout the disc (arrowheads). Images show representative examples to illustrate extent

of misexpression of target genes. en, tsh, Dll, and eve expression was visualized with antibodies against their protein products; ap and pnr expression was vi-

sualized using Gal4-tagged alleles in UAS-nLacZ transgenic animals and staining with b-galactosidase antibodies. Clones were analyzed at different time points

after clone induction (row 2 from left to right) dSfmbt/96 hr, Scm/68 hr, Psc-Su(z)2/48 hr, Scm/72 hr, Scm/96 hr, Psc-Su(z)2/96 hr (row 3 from left to right), ph/96 hr,

Scm BXC/72 hr, ph/72 hr, Scm BXC/72 hr, Scm BXC/96 hr, ph/96 hr.

Figure 4. Global, Tissue- and Cell Type-Specific Regulation of

Target Genes by the PcG System

(Top) Wild-type (wt, top row), ph mutant (middle row) and Psc-Su(z)2 mutant

(bottom row) embryos stained with antibodies against Tsh, Eve, or Doc2/3 pro-

tein as indicated. ph and Psc-Su(z)2 mutants show global activation of tsh in all

segments (left column, arrowheads mark misexpression in head), general ac-

tivation of eve in the nervous system (arrowheads) but, apart from a few cells,

not in the epidermis and mesoderm (middle column), and failure to restrict Doc

expression (arrowheads) to the two pairs of cardioblast cells in the mesoderm

of every segment (small arrows).

(Below) ChIP analysis to monitor Ph and Pho binding in wild-type embryos.

Analysis was performed and results are presented as in Figure 3. Note, at

tsh, Ph, and Pho are bound at the +19 kb PRE and not at the +15 kb PRE where

PcG protein complexes are bound in discs (compare with Figure 3). At eve,

PcG protein complexes are bound at the promoter proximal �0.2 kb PRE

and at the +9.1 kb PRE (compare with Figure 3).
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clones, we first analyzed the morphology and DNA content of the

mutant cells. Staining of imaginal discs with Psc-Su(z)2 or ph

mutant clones with antibodies against nuclear lamin revealed

that the mutant cells show a substantial increase in nuclear

and cellular volume (Figure 5 and data not shown). Interestingly,

this phenotype is not observed in clones of cells that are homo-

zygous for a protein null mutation in Pc or in clones of cells homo-

zygous for Sce1, the strongest available Sce/Ring allele (Fig-

ure 5). To test whether the increased nuclear size of Psc-Su(z)2

or ph mutant cells may be due to a change in DNA content, we

dissociated imaginal discs with PcG mutant clones into individ-

ual cells and measured the DNA content of mutant (i.e., GFP-

negative) and wild-type (i.e., GFP-positive) cells from the same

disc by FACS analysis. In each case, the mutant cells have a nor-

mal 2C/4C DNA content (Figure 5). However, we found that Psc-

Su(z)2 and ph mutant cells show a drastic change in cell cycle

phasing, with the fraction of G0/G1 cells being strongly reduced

and the fraction of G2/M cells being substantially increased

compared to wild-type control cells in the same disc (Figure 5).

In contrast, the cell cycle phasing of Pc or Sce/Ring mutant cells

is comparable to wild-type cells (Figure 5). These observations

using loss-of-function mutations in developing Drosophila larvae

are in contrast with previous studies using RNAi knockdown of

Pc in proliferating S2 cells where an altered cell cycle profile

with a lengthened G2/M phase was reported (Martinez et al.,

2006). Taken together, our analyses demonstrate that the

PRC1 components Ph, Psc and Su(z)2 are critically required

for restricting growth and proliferation of imaginal disc cells.

Interestingly, our ChIP-chip analyses identified the cell cycle

regulator genes Rbf, E2F, Dp, and CycB as PhoRC targets (Ta-

bles S1–S4). This is intriguing because Rbf, E2F, and Dp were

shown to control cell growth and proliferation in imaginal disc

Figure 5. PcG Control of Cell Growth and Proliferation

(Top) Wing imaginal discs from third-instar larvae with clones of cells homozygous for the indicated PcG mutations stained with an antibody against nuclear lamin

(magenta). Clones were induced 48 hr prior to analysis and are marked by absence of GFP; a single clone is marked with a blue line in each image. Note the

increased size and altered morphology of Psc-Su(z)2 and ph mutant nuclei compared to GFP-positive wild-type nuclei. Psc-Su(z)2 and ph mutant clone tissue

forms vesicles, often with cavities (asterisk), that sort out from surrounding wild-type tissue. Pc or Sce/Ring mutant clones do not show these phenotypes.

(Below) DNA content and cell cycle profile of Psc-Su(z)2, ph, Pc and Sce/Ring mutant cells and GFP-positive wild-type control cells in imaginal discs from third-

instar larvae. Clones were induced 96 hr prior to analysis. Note the change in cell cycle phasing in Psc-Su(z)2 and in ph mutant cells (see text for details).
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cells (Neufeld et al., 1998). ChIP assays in imaginal discs further

showed that not only Pho but also the PRC1 component Ph is

bound at the identified PREs in the Rbf, E2F, Dp, and CycB

genes (Figure 6A). Interestingly, none of these genes had been

described as PRC1 or PRC2 targets in tissue culture cells

(Schwartz et al., 2006).

To determine whether the tumor phenotypes of Psc-Su(z)2 or

ph mutant clones might be associated with altered expression

levels of these cell cycle regulators, we stained PcG mutant

clones with antibodies against Rbf, E2F, or CycB. As expected,

all three proteins are ubiquitously expressed in proliferating

imaginal disc cells. We have been unable to detect altered Rbf

or E2F protein levels in Psc-Su(z)2 or ph mutant cell clones

(data not shown), suggesting that regulation of Rbf or E2F by

the PcG system may be subtle or does not occur in the tissues

analyzed here. In contrast, we found that CycB protein levels

were elevated in both Psc-Su(z)2 and ph mutant clones

(Figure 6B). Together with the observation that PhoRC and

PRC1 components are bound at the CycB PRE (Figure 6A),

this result suggests that PcG protein complexes directly regulate

the levels of CycB transcription. Understanding the relationship

between the tumor phenotype of Psc-Su(z)2 and ph mutant

clones and transcriptional control of cell cycle regulators such

as CycB by the PcG system will need further investigation. How-

Figure 6. PcG Complexes Target Cell Cycle

Regulator Genes

(A) ChIP analysis to monitor Ph and Pho binding in

wild-type embryos. Analysis was performed and

results are presented as in Figure 3.

(B) Wing imaginal discs from third instar larvae

with clones of cells homozygous for the indicated

PcG mutations stained with an antibody to detect

CycB (magenta) and costained with Hoechst

(blue) to visualize nuclei; mutant cells are marked

by absence of GFP. Psc-Su(z)2 and ph mutant

clones were induced 72 hr prior to analysis, and

Pc and Sce/Ring mutant clones 96 hr prior to anal-

ysis. CycB protein levels are increased in Psc-

Su(z)2 and ph mutant clones (arrowheads) but

not in Pc or Sce/Ring mutant clones.

ever, the finding that the PcG system con-

trols the expression levels of CycB and

possibly other cell cycle regulators sug-

gests that the system is not only a binary

ON/OFF switch to confine expression of

genes to subsets of cells within an organ-

ism, but that it is also used to dynamically

modulate the levels of transcription of

certain target genes within cells where

these genes are expressed.

DISCUSSION

Global identification of genomic locations

to which PcG protein complexes bind and

unraveling how expression of target

genes is regulated by these complexes is important to under-

stand how the PcG system controls transcription of the genome.

The following main conclusions can be drawn from the work pre-

sented here: (1) PhoRC is sharply localized at discrete PRE se-

quences, many of which are co-occupied by PRC1 and PRC2.

(2) 196 PREs were identified in the Drosophila genome where

PhoRC is constitutively bound in embryos and larvae. In general,

these PREs are located within ±1 kb from the closest gene tran-

scription start site and the majority of target genes contain only

one PRE. (3) Sequence analyses of identified PREs allowed us

to define an extended Pho-binding motif that is part of the signa-

ture of PhoRC-bound PREs. (4) Functional analyses in Drosoph-

ila reveal that PcG proteins repress transcription of several key

developmental regulators. In particular, the PcG system is re-

quired for maintaining the subdivision of segment primordia

into anteroposterior, dorsoventral and proximodistal compart-

ments by repressing the genes en, ap, pnr, tsh, and Dll. (5) As dis-

cussed in detail below, these analyses suggest that extracellular

signaling can selectively induce transcription of previously silent

PcG target genes, even though PcG protein complexes are

bound at their PREs. (6) Among the PcG target genes are also

cell cycle regulators such as Rbf, E2F, Dp, and CycB, and we

provide evidence that the PcG system regulates expression

levels of the CycB gene in Drosophila.
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PcG Complex Binding at PREs
Genome-wide binding profiling and ChIP analyses at selected

target genes revealed an extensive overlap between PhoRC-,

PRC1-, and PRC2-bound regions. These results, together with

previous reports that Pho interacts with and is required for tar-

geting of PRC1 and/or PRC2 at HOX gene PREs (Poux et al.,

2001; Mohd-Sarip et al., 2002, 2005; Wang et al., 2004b; Kly-

menko et al., 2006), suggest that PhoRC is needed for PRC1

and PRC2 binding at many PcG target genes. It should also be

recalled that in larvae, PhoRC, PRC1, and PRC2 are all constitu-

tively bound to PREs of the HOX gene Ubx, both in cells where

Ubx is repressed and in cells where it is active (Papp and Müller,

2006). The observation that the same PRE sites are occupied in

both tissue culture cells and in developing Drosophila thus fur-

ther implies that PhoRC, PRC1, and PRC2 may be constitutively

bound to a large fraction if not most of their target genes.

What are the sequences that make up a PRE? Using an algo-

rithm based on binding site motifs for Pho, GAF/Trl, and Zeste

proteins, Ringrose et al. (2003) predicted 167 PREs across the

Drosophila genome. We detected PhoRC binding at 26 of these

predicted PREs (15%; Ringrose et al., 2003). Intriguingly, we

found a significant overlap between PhoRC-bound regions and

regions bound by GAF/Trl but only a limited overlap with Zeste-

bound regions. GAF/Trl mutants do not show HOX misexpres-

sion phenotypes, making its role at HOX gene PREs somewhat

enigmatic (reviewed in Müller and Kassis, 2006). However, it is

possible that GAF/Trl is required for PRC1 and/or PRC2 targeting

to PREs of non-HOX genes. Finally, it is important to keep in mind

that PRC1 and PRC2 are also bound at genomic regions where

we have been unable to detect PhoRC, suggesting that they

are targeted there by other factors.

PcG Regulation of Developmental Regulator Genes
The most obvious phenotype of PcG mutants in Drosophila are

homeotic transformations, caused by the global misexpression

of multiple HOX genes. In this study, we monitored loss of repres-

sion of several non-HOX target genes and we show that these

genes are indeed also misexpressed in PcG mutants. In particu-

lar, we found that the PcG system represses key regulator genes

required for the subdivision of appendages into anteroposterior,

dorsoventral, and proximodistal compartments. This suggests

that the PcG system is responsible for maintaining many more

cell fate decisions than may be immediately evident from the phe-

notype. In this context, it is important to note that at some target

genes, control by PcG proteins is masked by other regulatory in-

teractions and can only be revealed in the absence of those reg-

ulatory inputs. The downregulation of Dll in PcG mutant clones by

HOX proteins represents a prime example for such a masking ef-

fect; regulation of Dll by the PcG system could only be revealed in

cells lacking both PcG and HOX gene functions.

Finally, we found that some target genes are only strongly mis-

expressed in certain PcG mutants but not in others, even though

PhoRC, PRC1, and PRC2 are all cobound at these genes. This

implies that in those cases not all PcG protein complexes or

complex components are required for repression. In the most

extreme scenario, recruitment of all three complexes reflects

the default state that even occurs at genes that require i.e.,

only H2A ubiquitylation by PRC1 but not H3-K27 methylation

by PRC2 for repression.
886 Developmental Cell 15, 877–889, December 9, 2008 ª2008 Else
Signaling-Induced Activation at PcG-Repressed
Target Genes
The finding that PcG protein complexes are constitutively

bound at PREs of target genes in both embryonic and imaginal

disc cells has implications for understanding regulation by the

PcG system. In particular, target genes such as ap, Dll, or pnr

are not active in the wing disc primordium in embryos, remain

silent as the primordium grows during the early larval stages

and only become transcriptionally active at later larval stages

(Vachon et al., 1992; Cohen et al., 1992; Williams et al., 1993;

Gorfinkiel et al., 1997; Tomoyasu et al., 2000). The factors re-

sponsible for activating ap transcription during the second larval

instar are not known (Williams et al., 1993), but induction of Dll

expression in the wing blade primordium during the third larval

instar occurs in response to wg signaling (Gorfinkiel et al., 1997;

Neumann and Cohen, 1997), and expression of pnr in the notum

primordium during the second larval instar is activated by dpp

signaling (Sato and Saigo, 2000; Tomoyasu et al., 2000). The

most straightforward explanation of these observations is that

these signaling pathways are able to switch on expression of

these target genes even though PcG complexes are bound at

their PREs and even though their chromatin bears the Poly-

comb-repressive H3-K27me3 mark in embryos (Nekrasov

et al., 2007). In wild-type wing discs, Wg-signaling would thus

be able to overcome PcG repression at the Dll gene in wing

pouch cells but not in the notum and hinge region where Wg

protein is also present (Neumann and Cohen, 1997). Similarly,

in wild-type animals, Dpp-signaling only activates pnr expres-

sion in the notum and not along the whole length of the antero-

posterior compartment boundary where Dpp protein is ex-

pressed (Posakony et al., 1990). One possible explanation for

this selective activation in discrete parts of the disc would

be a requirement for signaling pathways to act in a combinatorial

manner with other (unknown) factors to relieve PcG repression.

Consistent with this, removal of PcG function often results in

misexpression of target genes only in specific regions of the

disc and that these regions receive the same signals that are

also responsible for activation of these target genes in their nor-

mal wild-type expression domain. For example, misexpression

of pnr mainly occurs in PcG mutant clones in the wing blade

and thus in cells that receive Dpp, the signal that also

activates pnr expression in its wild-type expression domain in

the notum. This raises the intriguing possibility that an important

function of the PcG system may be to spatially restrict activation

of target genes in response to more widely distributed extracel-

lular signals.

Concluding Remarks
Previous ChIP-chip studies showed that PcG protein complexes

are bound to a large number of developmental regulators in

mammalian embryonic stem cells (Boyer et al., 2006; Lee et al.,

2006). The majority of the genes bound by PcG proteins in stem

cells are orthologs of PcG target genes identified in flies, includ-

ing the family orthologs of en, ap, pnr, Dll, eve, and Doc whose

regulation we analyzed here. The finding that these genes are

regulated by the PcG system during Drosophila development

implies that the mammalian PcG system may also regulate the

orthologous genes in differentiating cells and tissues, beyond

the known regulation in stem cells.
vier Inc.



Developmental Cell

Polycomb Control of Drosophila Development
Our study identified cell cycle regulator genes as PcG targets,

and we provided evidence that the PcG system directly regu-

lates CycB expression. Control of cell cycle regulators by the

PcG system may provide a molecular explanation for the tumor

phenotype observed in proliferating imaginal disc cells lacking

the PRC1 components Psc-Su(z)2 or ph. The observation that

the PcG system controls transcription of genes whose expres-

sion is modulated during the cell cycle suggests that the PcG

system is also used to regulate target genes more dynamically

than previously thought. In mammalian cells, knockout of the

Psc homolog bmi-1 results in cellular senescence via loss of

p16/INK4A transcriptional repression, a cyclin D regulator with-

out any obvious ortholog in the Drosophila genome (Jacobs

et al., 1999). It therefore appears that the PcG system has a con-

served role in regulating expression of genes involved in body

patterning but that it evolved in different ways to control cell

growth and proliferation in mammals and flies.

EXPERIMENTAL PROCEDURES

Antibodies and Drosophila Strains

All antibodies and fly strains used in this study are listed in Supplemental Data.

ChIP-chip in Drosophila Using Affymetrix Whole-Genome

Microarrays

ChIP from Drosophila embryos and larval imaginal discs was performed essen-

tially as described in Klymenko et al. (2006) and in Papp and Müller (2006), re-

spectively. The detailed protocols, including description of the quantitative

analysis of ChIP material, a list with the PCR primers used for gene-specific

amplification and the ChIP-chip procedure can be found in Supplemental

Data. Data analysis is described in detail in Supplemental Data. In brief, for

each of the three datasets (PhoE, PhoL, dSfmbtL) a quantile normalization (Bol-

stad et al., 2003) was applied to normalize together the ChIP hybridizations and

three genomic DNA hybridizations. Significantly bound regions were identified

using TileMap (Ji and Wong, 2005) with the hidden Markov model (HMM). The

relative distance of the midpoint of each region with respect to the closest tran-

scription start site (TSS) was computed. Target genes were assigned based on

TSS-proximal location. Assigned genes to each dataset were tested for en-

riched GO slim term annotations. For Pho-binding motif analysis, enrichment

for transcription factor binding signatures was performed on each of the three

datasets (PhoE, PhoL, and dSfmbtL) using RSAT (van Helden, 2003). GCCAT

enriched patterns were used for position-specific scoring matrix (PSSM) re-

construction. Matrices obtained for each dataset were averaged yielding to

the PSSM available in Supplemental Data. Predictions of Pho-binding sites

were made using Patser (Hertz and Stromo, 1999). Frequency of the Pho-bind-

ing site in each dataset was compared to the frequency of the motif in the ge-

nome. Frequency of the motif in the core-PhoRC bound regions was compared

to the frequency observed in 1000 randomly generated region sets.

Immunostaining of Drosophila Embryos and Larval Imaginal Discs

Antibody staining of embryos was done following standard protocols. Staining

of imaginal discs was performed as described in Beuchle et al. (2001).

FACS Analysis of Drosophila Larval Wing Disc Cells

Ninety-six hours after mutant clone induction, wing discs of third-instar larvae

were dissected in ice-cold PBS. For each measurement, five to eight discs

were incubated in Trypsin-EDTA solution at 28�C for 2–4 hr. Twenty minutes

prior to FACS analysis, Hoechst 33342 was added to the sample. FACS

data were collected (DAKO MoFlo High Speed Sorter) and analyzed using

Summit software. See Supplemental Data for details.

ACCESSION NUMBERS

The raw and processed microarray data have been deposited in the ArrayEx-

press database under accession number E-TABM-525.
Developm
SUPPLEMENTAL DATA

The Supplemental Data include five figures, seven tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

www.developmentalcell.com/supplemental/S1534-5807(08)00432-2.
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