28 research outputs found

    The inhibition of complement system in formal and emerging indications: results from parallel one-stage pairwise and network meta-analyses of clinical trials and real-life data studies

    Get PDF
    Producción CientíficaThis manuscript presents quantitative findings on the actual effectiveness of terminal complement component 5 (C5) inhibitors and complement component 1 (C1) esterase inhibitors through their formal and common “off-label” (compassionate) indications. The results emanated from pairwise and network meta-analyses to present evidence until September 2019. Clinical trials (CT) and real-life non-randomized studies of the effects of interventions (NRSI) are consistent on the benefits of C5 inhibitors and of the absence of effects of C1 esterase inhibitors (n = 7484): Mathematically, eculizumab (surface under the cumulative ranking area (SUCRA) >0.6) and ravulizumab (SUCRA ≥ 0.7) were similar in terms of their protective effect on hemolysis in paroxysmal nocturnal hemoglobinuria (PNH), thrombotic microangiopathy (TMA) in atypical hemolytic uremic syndrome (aHUS), and acute kidney injury (AKI) in aHUS, in comparison to pre-/off-treatment state and/or placebo (SUCRA < 0.01), and eculizumab was efficacious on thrombotic events in PNH (odds ratio (OR)/95% confidence interval (95% CI) in CT and real-life NRSI, 0.07/0.03 to 0.19, 0.24/0.17 to 0.33) and chronic kidney disease (CKD) occurrence/progression in PNH (0.31/0.10 to 0.97, 0.66/0.44 to 0.98). In addition, meta-analysis on clinical trials shows that eculizumab mitigates a refractory generalized myasthenia gravis (rgMG) crisis (0.29/0.13 to 0.61) and prevents new acute antibody-mediated rejection (AMR) episodes in kidney transplant recipients (0.25/0.13 to 0.49). The update of findings from this meta-analysis will be useful to promote a better use of complement inhibitors, and to achieve personalization of treatments with this class of drugs

    Altered Humoral Immune Responses and IgG Subtypes in NOX2-Deficient Mice and Patients: A Key Role for NOX2 in Antigen-Presenting Cells

    Get PDF
    Chronic granulomatous disease (CGD) is a primary immunodeficiency resulting from loss of function mutations in the reactive oxygen species generating phagocyte NADPH oxidase (NOX2). CGD patients are prone to infection, but also have an increased susceptibility to autoimmune diseases. The aim of this study was to investigate the role of NOX2 in the regulation of specific immunity. In both CGD patients and NOX2-deficient mice, we observed an alteration in the basal proportions of IgG subtypes. Upon immunization with curdlan—a dectin 1 agonist—NOX2-deficient mice showed increased production of IgG2c compared to controls, and restimulation of lymph node-derived cells led to increased production of IFNγ, but not IL-5, indicative hallmark of an enhanced Th1 response. T cell activation was increased in NOX2-deficient mice and a similar trend was observed in vitro when T cells were co-cultured with NOX2-deficient bone marrow-derived cells. In contrast, no difference in T cell activation was observed when NOX2-deficient T cells were co-cultured with wild-type BMDC. Following stimulation of NOX2-deficient dendritic cells (DCs), no difference in costimulatory molecules was observed, while there was an increase in the release of Th1-driving cytokines. In summary, both CGD patients and CGD mice have an altered IgG subtype distribution, which is associated with an increased IFNγ production. Thus, NOX2 within DCs appears to be an important regulator at the interface of innate and specific immunity, especially after activation of the dectin 1 pathway, limiting immune activation and the development of autoimmunity

    Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas

    Get PDF
    CTEN/TNS4 is an oncogene in colorectal cancer (CRC) which enhances cell motility although the mechanism of Cten regulation is unknown. We found an association between high Cten expression and KRAS/BRAF mutation in a series of CRC cell lines (p = 0.03) and hypothesised that Kras may regulate Cten. To test this, Kras was knocked-down (using small interfering (si)RNA) in CRC cell lines SW620 and DLD1 (high Cten expressors and mutant for KRAS). In each cell line, Kras knockdown was mirrored by down-regulation of Cten Since Kras signals through Braf, we tested the effect of Kras knockdown in CRC cell line Colo205 (which shows high Cten expression and is mutant for BRAF but wild type for KRAS). Cten levels were unaffected by Kras knockdown whilst Braf knockdown resulted in reduced Cten expression suggesting that Kras signals via Braf to regulate Cten. Quantification of Cten mRNA and protein analysis following proteasome inhibition suggested that regulation was of Cten transcription. Kras knockdown inhibited cell motility. To test whether this could be mediated through Cten, SW620 cells were co-transfected with Kras specific siRNAs and a Cten expression vector. Restoring Cten expression was able to restore cell motility despite Kras knockdown (transwell migration and wounding assay, p<0.001 for both). Since KRAS is mutated in many cancers, we investigated whether this relationship could be demonstrated in other tumour models. The experiments were repeated in the pancreatic cancer cell lines Colo357 & PSN-1(both high Cten expressors and mutant for KRAS). In both cell lines, Kras was shown to regulate Cten and forced expression of Cten was able to rescue loss of cell motility following Kras knockdown in PSN-1 (transwell migration assay, p<0.001). We conclude that, in the colon and pancreas, Cten is a downstream target of Kras and may be a mechanism through which Kras regulates of cell motility

    Role of NOX2 as regulator of the adaptive immune response

    No full text
    NOX2 is an enzymatic complex that produce oxygen radicals and is important for killing pathogens. A lack of function mutation in genes coding for NOX2 or its subunits cause a hereditary disease called chronic granulomatous disease (CGD). In addition to recurrent infection, CGD patients are also more prone to develop autoimmunity. This suggests an important role of NOX2 in controlling the adaptive immune response. The aim of this thesis was to study this role. We therefore used ovalbumin (OVA) as antigen and curdlan or alum as adjuvant to study the humoral and T cell response in NOX2-deficient and WT mice. We found that NOX2-deficient mice produced more OVA-specific IgG2c antibodies. This increased antibody production was associated with an enhanced Th1 response. We also demonstrated that NOX2-deficient dendritic cells are more efficient in activating T cells than WT DCs. Finally, NOX2-deficient DCs produce more Th1-driving cytokine that WT DCs

    Phagocyte NADPH oxidase and specific immunity

    No full text
    The phagocyte NADPH oxidase NOX2 produces reactive oxygen species (ROS) and is a well-known player in host defence. However, there is also increasing evidence for a regulatory role of NOX2 in adaptive immunity. Deficiency in phagocyte NADPH oxidase causes chronic granulomatous disease (CGD) in humans, a condition that can also be studied in CGD mice. Clinical observations in CGD patients suggest a higher susceptibility to autoimmune diseases, in particular lupus, idiopathic thrombocytopenic purpura and rheumatoid arthritis. In mice, a strong correlation exists between a polymorphism in a NOX2 subunit and the development of autoimmune arthritis. NOX2 deficiency in mice also favours lupus development. Both CGD patients and CGD mice exhibit increased levels of immunoglobulins, including autoantibodies. Despite these phenotypes suggesting a role for NOX2 in specific immunity, mechanistic explanations for the typical increase of CGD in autoimmune disease and antibody levels are still preliminary. NOX2-dependent ROS generation is well documented for dendritic cells and B-lymphocytes. It is unclear whether T-lymphocytes produce ROS themselves or whether they are exposed to ROS derived from dendritic cells during the process of antigen presentation. ROS are signalling molecules in virtually any cell type, including T- and B-lymphocytes. However, knowledge about the impact of ROS-dependent signalling on T- and B-lymphocyte phenotype and response is still limited. ROS might contribute to Th1/Th2/Th17 cell fate decisions during T-lymphocyte activation and might enhance immunoglobulin production by B-lymphocytes. In dendritic cells, NOX2-derived ROS might be important for antigen processing and cell activation

    Les souris ne sont pas des hommes et pourtant…

    No full text
    L’étude des pathologies humaines est souvent limitée par l’absence de modèle animal approprié. La souris est le modèle le plus fréquemment utilisé pour l’étude des maladies infectieuses humaines. Cependant, un grand nombre d’agents infectieux spécifiques de l’homme n’infectent pas la souris. Ces vingt dernières années, la greffe de cellules progénitrices ou de tissus humains chez des souris immunodéficientes a permis de générer des souris dites humanisées. Bien que ces modèles demandent encore à être améliorés, ils ont permis de reproduire chez la souris certains aspects des pathologies humaines et laissent ainsi espérer le développement dans un futur proche de thérapies innovantes
    corecore