52 research outputs found
Nodule-specific modulation of glutamine synthetase in transgenic medicago truncatula leads to inverse alterations in asparagine synthetase expression
Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS)
cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter
Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared
with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate
with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme
composition showed that the increased or decreased levels of GS activity were attributable to major changes in the
homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the
levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants,
whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants.
The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid aminotransferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and
sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were
also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented
here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS
in assimilating ammonium when GS becomes limiting is discussed.info:eu-repo/semantics/publishedVersio
Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds
<p>Abstract</p> <p>Background</p> <p>Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in <it>Medicago truncatula</it>.</p> <p>Results</p> <p>This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in <it>M. truncatula</it>. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene.</p> <p>Conclusions</p> <p>This study shows that <it>Medicago truncatula </it>contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.</p
Risk factors for health impairments in children after hospitalization for acute COVID-19 or MIS-C
ObjectiveTo identify risk factors for persistent impairments after pediatric hospitalization for acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome in children (MIS-C) during the SARS-CoV-2 pandemic.MethodsAcross 25 U.S. Overcoming COVID-19 Network hospitals, we conducted a prospective cohort study of patients <21-years-old hospitalized for acute COVID-19 or MIS-C (May 2020 to March 2022) surveyed 2- to 4-months post-admission. Multivariable regression was used to calculate adjusted risk ratios (aRR) and 95% confidence intervals (CI).ResultsOf 232 children with acute COVID-19, 71 (30.6%) had persistent symptoms and 50 (21.6%) had activity impairments at follow-up; for MIS-C (n = 241), 56 (23.2%) had persistent symptoms and 58 (24.1%) had activity impairments. In adjusted analyses of patients with acute COVID-19, receipt of mechanical ventilation was associated with persistent symptoms [aRR 1.83 (95% CI: 1.07, 3.13)] whereas obesity [aRR 2.18 (95% CI: 1.05, 4.51)] and greater organ system involvement [aRR 1.35 (95% CI: 1.13, 1.61)] were associated with activity impairment. For patients with MIS-C, having a pre-existing respiratory condition was associated with persistent symptoms [aRR 3.04 (95% CI: 1.70, 5.41)] whereas obesity [aRR 1.86 (95% CI: 1.09, 3.15)] and greater organ system involvement [aRR 1.26 (1.00, 1.58)] were associated with activity impairments.DiscussionAmong patients hospitalized, nearly one in three hospitalized with acute COVID-19 and one in four hospitalized with MIS-C had persistent impairments for ≥2 months post-hospitalization. Persistent impairments were associated with more severe illness and underlying health conditions, identifying populations to target for follow-up
Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear.
Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19.
Setting, Design, and Participants Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features.
Exposures Severe acute respiratory syndrome coronavirus 2.
Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge.
Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died.
Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown
Characterization of the gene encoding the plastid-located glutamine synthetase of Phaseolus vulgaris: regulation of/-glucuronidase gene fusions in transgenic tobacco
International audienceThe gln-~ gene, which encodes the plastid-located glutamine synthetase ofPhaseolus vulgaris, was cloned and its promoter region was sequenced. Primer extension analysis was used to map the two major transcription initiation sites which are about 90 nucleotides apart. A fusion of 2.3 kb of the upstream region of the gln-b gene to the reporter gene uidA encoding/?-glucuronidase was shown to be expressed in the chlorophyllous cell types of leaves and stems and in the root meristem region of transgenic tobacco. Analysis of a series of three 5' promoter deletion fusions revealed the presence of a region essential for promoter activity between-786 and-327 and regions involved in tissue-specific regulation and light regulation between-786 and + 43
Characterization of the gene encoding the plastid-located glutamine synthetase of Phaseolus vulgaris: regulation of/-glucuronidase gene fusions in transgenic tobacco
International audienceThe gln-~ gene, which encodes the plastid-located glutamine synthetase ofPhaseolus vulgaris, was cloned and its promoter region was sequenced. Primer extension analysis was used to map the two major transcription initiation sites which are about 90 nucleotides apart. A fusion of 2.3 kb of the upstream region of the gln-b gene to the reporter gene uidA encoding/?-glucuronidase was shown to be expressed in the chlorophyllous cell types of leaves and stems and in the root meristem region of transgenic tobacco. Analysis of a series of three 5' promoter deletion fusions revealed the presence of a region essential for promoter activity between-786 and-327 and regions involved in tissue-specific regulation and light regulation between-786 and + 43
GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules
Barsch A, Carvalho HG, Cullimore JV, Niehaus K. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. Journal of Biotechnology. 2006;127(1):79-83.In symbiotic interaction with legume plants, bacteria termed Rhizobia can fix massive amounts of atmospheric nitrogen which is primarily provided in the form of ammonium to the host plants. Therefore, legume root nodules that house the symbiotic bacteria are ideally suited to study the process of primary ammonium assimilation. Here, we present a GC-MS based metabolite profiling analysis of Medicago truncatula root nodules (induced by the bacterium Sinorhizobium meliloti) before and after inhibition of glutamine synthetase (GS) by the chemical herbicide phosphinotricine. The primary role of GS in ammonium assimilation was revealed by drastically reduced levels of glutamine in phosphinotricine treated root nodules. In comparison to previous results of increased asparagine synthetase transcript and protein abundances in GS inhibited nodules the metabolic data revealed that decreased amounts of aspartate might preclude taking advantage of this elevated enzymatic activity. A potential role of glutamate dehydrogenase in ammonium assimilation was metabolically indicated 24 and 48 h after GS inhibition. Therefore, nodule ammonium assimilation might in principle involve three interdependent metabolic pathways which are adjusted to control basic nitrogen metabolism. (c) 2006 Elsevier B.V. All rights reserved
- …