8 research outputs found

    Effect of phytic acid from rice and corn on morphology, cell proliferation, apoptosis and cyclooxygenase-2 expression in swine jejunal explants

    No full text
    Phytic acid (IP6) is a potent antioxidant present in several natural foods. Beneficial effects on colon cancer and inflammation have been associated to IP6 in several studies, however, scarce data about the effect on small intestine are available. The aim of the present study was to evaluate the effect of different doses of IP6 from rice and corn on intestinal morphology, cellular proliferation, apoptosis and cyclooxygenase-2 (Cox-2) expression using swine jejunal explants as experimental model. This report demonstrated that explants treated with 0.5 mM, 2.5 mM and 5 mM of IP6 from rice and 2.5 mM and 5 mM from corn showed higher villi height compared to control. Explants treated with 2.5 mM and 5 mM IP6 from rice exhibited a significant reduction on intestinal histological changes (villi atrophy and fusion, edema, lymphatic vessel dilation, loss of apical enterocytes, cell vacuolation, necrotic debris, morphology of enterocytes and microvilli and number of villi). The cellular proliferation decreased in the explants treated with the dosages of 2.5 mM and 5 mM from rice and a significant decrease in cell apoptosis was observed in the treatments with 2.5 mM IP6 from rice and 5 mM IP6 from corn compared to the control. The explants treated with 2.5 mM and 5 mM IP6 from rice and corn showed a significant reduction of the Cox-2 expression. Higher dosages of IP6 from rice and corn used in this experiment increased the viability and preservation of intestinal tissue as evidenced by morphological and immunohistochemical assays

    Phytic acid decreases deoxynivalenol and fumonisin B1-induced changes on swine jejunal explants

    Get PDF
    The purpose of the present study was to investigate the effects of phytic acid (IP6) on morphological and immunohistochemical parameters on intestinal explants exposed to deoxynivalenol (DON) and fumonisin B1 (FB1). The jejunal explants were exposed for 4 h to different treatments: control, DON (10 ÎŒM), DON plus 2.5 mM or 5 mM IP6, FB1 (70 ÎŒM), and FB1 plus 2.5 mM or 5 mM IP6. Both mycotoxins induced significant intestinal lesions and decreased villi height. The presence of 2.5 mM and 5 mM IP6 significantly inhibited the morphological changes caused by the mycotoxins. DON induced a significant increase in caspase-3 (83%) and cyclooxygenase-2 (71.3%) expression compared with the control. The presence of 5 mM IP6 induced a significant decrease in caspase-3 (43.7%) and Cox-2 (48%) expression compared with the DON group. FB1 induced a significant increase in caspase-3 expression (47%) compared to the control, whereas IP6 induced no significant change in this expression. A significant decrease in cell proliferation was observed when explants were exposed to 5 mM of IP6 in comparison with the DON and FB1 groups. The present data provide evidence that phytic acid modulates the toxic effects induced by DON and FB1 on intestinal tissue

    Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops

    No full text
    Remerciements : INRA, Centre de recherche Val de Loire (Plate-forme CIRE Chirurgie et Imagerie pour la Recherche etl’Enseignement, UMR Physiologie de la Reproduction et des Comportements (INRA 0085,CNRS 7247, universitĂ© François-Rabelais de Tours, Institut français du cheval et de l’équitation),37380 Nouzilly, FranceThe mycotoxins deoxynivalenol (DON) and nivalenol (NIV), worldwide cereal contaminants, raise concerns for animal and human gut health, following contaminated food or feed ingestion. The impact of DON and NIV on intestinal mucosa was investigated after acute exposure, in vitro and in vivo. The histological changes induced by DON and NIV were analyzed after four-hour exposure on pig jejunum explants and loops, two alternative models. On explants, dose-dependent increases in the histological changes were induced by DON and NIV, with a two-fold increase in lesion severity at 10 ”M NIV. On loops, NIV had a greater impact on the mucosa than DON. The overall proliferative cells showed 30% and 13% decrease after NIV and DON exposure, respectively, and NIV increased the proliferative index of crypt enterocytes. NIV also increased apoptosis at the top of villi and reduced by almost half the proliferative/apoptotic cell ratio. Lamina propria cells (mainly immune cells) were more sensitive than enterocytes (epithelial cells) to apoptosis induced by NIV. Our results demonstrate a greater impact of NIV than DON on the intestinal mucosa, both in vitro and in vivo, and highlight the need of a specific hazard characterization for NIV risk assessment

    Intestinal toxicity of the type B trichothecene mycotoxin fusarenon-X: whole transcriptome profiling reveals new signaling pathways

    No full text
    The few data available on fusarenon-X (FX) do not support the derivation of health-based guidance values, although preliminary results suggest higher toxicity than other regulated trichothecenes. Using histo-morphological analysis and whole transcriptome profiling, this study was designed to obtain a global view of the intestinal alterations induced by FX. Deoxynivalenol (DON) served as a benchmark. FX induced more severe histological alterations than DON. Inflammation was the hallmark of the molecular toxicity of both mycotoxins. The benchmark doses for the up-regulation of key inflammatory genes by FX were 4- to 45-fold higher than the previously reported values for DON. The transcriptome analysis revealed that both mycotoxins down-regulated the peroxisome proliferator-activated receptor (PPAR) and liver X receptor - retinoid X receptor (LXR-RXR) signaling pathways that control lipid metabolism. Interestingly, several pathways, including VDR/RXR activation, ephrin receptor signaling, and GNRH signaling, were specific to FX and thus discriminated the transcriptomic fingerprints of the two mycotoxins. These results demonstrate that FX induces more potent intestinal inflammation than DON. Moreover, although the mechanisms of toxicity of both mycotoxins are similar in many ways, this study emphasize specific pathways targeted by each mycotoxin, highlighting the need for specific mechanism-based risk assessments of Fusarium mycotoxins

    Partial efficacy of a Brazilian coralsnake antivenom and Varespladib to neutralize distinct toxic effects induced by a sublethal Micrurus dumerilii carinicauda envenoming in rats

    No full text
    In this work, we reported the efficacy of a combination of Brazilian therapeutic coralsnake antivenom (CAV) and varespladib (phospholipase A2 inhibitor – VPL) in partially neutralizing selected toxic effects of Micrurus dumerilii carinicauda coralsnake venom in rats. Venom caused local myonecrosis and systemic neurotoxicity, nephrotoxicity, and hepatotoxicity within 2 h of injection. CAV and VPL administered separately failed to prevent most of these alterations. However, a combination of CAV plus VPL offered variable protection against venom-induced coagulation disturbances, leukocytosis, and renal-hepatic morphological alterationsUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    In vivo treatment with varespladib, a phospholipase A2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coralsnake) venom in rats

    No full text
    In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg – i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 ‘v/w’ – i.p.), VPL (0.5 mg/kg – i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.Fundação de Amparo à Pesquisa do Estado de São Paulo/[No.2020/04287-6]/FAPESP/BrasilFundação de Amparo à Pesquisa do Estado de São Paulo/[No.2020/14191-6]/FAPESP/BrasilConselho Nacional de Desenvolvimento Científico e Tecnológico/[No.309320/2016-0]/CNPq/BrasilUniversity of the West of São Paulo/[No.2020/04287-6]/UNOESTE/BrasilUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí
    corecore