3,398 research outputs found

    The exploration of Sr isotopic analysis applied to Chinese glazes: part one

    Get PDF
    Ash glaze and limestone glaze are two major glaze types in southern Chinese ceramic technology. In this study strontium isotope compositions were determined in ash glaze samples from the Yue kiln dated to between the 10th and 12th centuries AD, limestone glaze samples from Jingdezhen dated to between the 15th and 18th centuries AD and ceramic raw materials from Jingdezhen. The Sr isotopic characteristics of limestone glaze and ash glaze are completely different. The Sr isotope characteristics of limestone glaze is characterised by low Sr concentrations, large 87Sr/86Sr variation, and a two component mixing line. On the other hand the strontium isotope characteristic of ash glaze samples is characterised by a consistent 87Sr/86Sr signature and high Sr concentrations with a large variation. The different Sr isotope compositions for the two types of glazes are a reflection of the various raw materials involved in making them. The Sr isotopic composition has been altered by the refinement process that the raw material was subjected to. It was found that the mineralogical changes caused by the alteration are reflected in the Sr isotope results. The potential of Sr isotopic analysis of Chinese glazes is evaluated according to the results produced by this, the first such stud

    The c-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole

    Get PDF
    We have assessed the ability of the plant secretory pathway to handle the expression of complex heterologous proteins by investigating the fate of a hybrid immunoglobulin A/G in tobacco cells. Although plant cells can express large amounts of the antibody, a relevant proportion is normally lost to vacuolar sorting and degradation. Here we show that the synthesis of high amounts of IgA/G does not impose stress on the plant secretory pathway. Plant cells can assemble antibody chains with high efficiency and vacuolar transport occurs only after the assembled immunoglobulins have traveled through the Golgi complex. We prove that vacuolar delivery of IgA/G depends on the presence of a cryptic sorting signal in the tailpiece of the IgA/G heavy chain. We also show that unassembled light chains are efficiently secreted as monomers by the plant secretory pathway

    DTA/TGA/DSC and densification data for iron phosphate glasses having natural UO2.67 or surrogate Bi2O3 added

    Get PDF
    A new set of iron-uranium phosphate glasses containing (1–20) UO2.67. (10–20) Fe2O3. (55–68) P2O5 (mass/%) were melted adequately. They were tested for glassy matrices to immobilize hazardous wastes such as radioactive ones. Likewise, new compositions had uranium oxide replaced with Bi2O3. Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and dilatometry measurements allowed us to study the thermal properties. TGA runs on phosphate glasses containing Fe and U oxides indicated that on heating the glasses, up to TS (dilatometric softening point), the Fe2+ ions oxidized irreversibly to Fe3+ ions which can increase the thermal stability of the glasses by delaying (or even avoiding) crystallization. The densification behavior, applied to pressed powder pellets of ground glasses, from controlled heating rate (CHR) runs (Δl/lo versus T/K), shows relative sample length change versus temperature during heating, provided further thermal data like densification details as well as definition of ranges of creep stability. Various DTA, DSC methods allowed estimating the activation energy for crystallization of these kind of glasses. In addition, separate crystallization treatments for a particular composition provided samples suitable to study the shape and content of crystals with the Scanning Electron Microscope (SEM)/Energy-Dispersive X-ray Spectroscopy (EDS) technique. Thus, a new family of iron-phosphate glasses having Na2O, Al2O3 added (RR6—RR62—RR63) is presented and discussed here and compared to various glasses (like PFeOx and PFeUOx) previously developed at the Bariloche Atomic Center, Argentina (CAB) for radioactive waste immobilization. Activation energies depicted roughly similar values for viscous flow densification of glasses melted with controlled amounts of UO2 for the earlier compositions as well as for the new formulations.Fil: Arboleda Zuluaga, Paula Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Rincón, Jesús Ma.. No especifíca;Fil: Gonzalez Oliver, Carlos Julian R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin
    corecore