42 research outputs found

    An Esrrb and nanog cell fate regulatory module controlled by feed forward loop interactions

    Get PDF
    Cell fate decisions during development are governed by multi-factorial regulatory mechanisms including chromatin remodeling, DNA methylation, binding of transcription factors to specific loci, RNA transcription and protein synthesis. However, the mechanisms by which such regulatory 'dimensions' coordinate cell fate decisions are currently poorly understood. Here we quantified the multi-dimensional molecular changes that occur in mouse embryonic stem cells (mESCs) upon depletion of Estrogen related receptor beta (Esrrb), a key pluripotency regulator. Comparative analyses of expression changes subsequent to depletion of Esrrb or Nanog, indicated that a system of interlocked feed-forward loops involving both factors, plays a central part in regulating the timing of mESC fate decisions. Taken together, our meta-analyses support a hierarchical model in which pluripotency is maintained by an Oct4-Sox2 regulatory module, while the timing of differentiation is regulated by a Nanog-Esrrb module

    Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling

    Get PDF
    SummaryMany signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming

    Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome

    Get PDF
    Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies

    Rational Design and Characterization of D-Phe-Pro-D-Arg-Derived Direct Thrombin Inhibitors

    Get PDF
    The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin's cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′

    Minimally Invasive Approaches to Myoma Management.

    No full text
    Patients affected by the presence of leiomyomas may incur a substantial physical, emotional, social, and financial toll as well as losses in their quality of life. Although many myomas are not amenable to medical therapy or hysteroscopic resection, many others are amenable to minimally invasive surgical approaches. In patients who prefer to retain their fertility, laparoscopic myomectomy should be considered the intervention of choice. In this review, we expand on the surgical techniques of both conventional laparoscopic and robotic-assisted myomectomies. We discuss port placement, enucleation of myomas, tissue extraction, minimization of blood loss, adhesion prevention, and the technique for closure of uterine incisions. Finally, we discuss the available data supporting the use of these 2 approaches as the preferred, safe, and effective fertility-sparing surgical option. We also briefly discuss the emerging technologies of uterine artery embolization, ultrasound surgery, and radiofrequency ablation

    Author\u27s reply regarding AAGL 2021 Endometriosis Classification: An Anatomy-Based Surgical Complexity Score

    No full text
    Many classifications proposed for this disease over the last decades. While most classification systems have been tailored to measure particular outcomes, all have limitations. In this study, we validated this new system\u27s ability to predict pain and infertility symptoms using a prospective, multi-center study involving over 1,200 cases and compared it to the ASRM classification for endometriosis. Future improvements are necessary to the proposed classification and the development of a preoperative classification by imaging are the next steps

    AAGL 2021 endometriosis classification: An anatomy-based surgical complexity score

    No full text
    Study objective: To develop a new endometriosis classification system for scoring intraoperative surgical complexity and to examine its correlation with patient-reported pain and infertility. Design: Multicenter study of patients treated at 3 recognized endometriosis centers. Setting: Three specialized endometriosis surgical centers in São Paulo, Brazil and Barcelona, Spain. Patients: Patients aged 15 to 45 years with histologically proven endometriosis and no history of pelvic malignancy underwent laparoscopic treatment of endometriosis. Interventions: Demographic data and clinical history, including dysmenorrhea, noncyclic pelvic pain, dyspareunia, dysuria and dyschezia, were prospectively recorded. All patients were staged surgically according to the new 2021 American Association of Gynecologic Laparoscopists (AAGL) and revised American Society of Reproductive Medicine (ASRM) classification systems. The staging for each system was compared against a 4-level surgical complexity scale defined by the most complex procedure performed. Measurements and main results: A total of 1224 patients undergoing surgery met inclusion criteria. The AAGL score discriminated between 4 stages of surgical complexity with high reproducibility (κ = 0.621), whereas the ASRM score discriminated between the complexity stages with poor reproducibility (κ = 0.317). The AAGL staging system correlated with dysmenorrhea, dyspareunia, dyschezia, total pain score, and infertility comparably with the ASRM staging system. Conclusion: The AAGL 2021 Endometriosis Classification allows for identifying objective intraoperative findings that reliably discriminate surgical complexity levels better than the ASRM staging system. The AAGL severity stage correlates comparably with pain and infertility symptoms with the ASRM stage

    Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase

    No full text
    The Retinoblastoma 1 (RB1) tumor suppressor, a member of the Retinoblastoma gene family, functions as a pocket protein for the functional binding of E2F transcription factors. About 1/3 of retinoblastoma patients harbor a germline RB1 mutation or deletion, leading to the development of retinoblastoma. Here, we demonstrate generation of a heterozygous deletion of the RB1 gene in the H1 human embryonic stem cell line using CRISPR/Cas9 nickase genome editing. The RB1 heterozygous knockout H1 cell line shows a normal karyotype, maintains a pluripotent state, and is capable of differentiation to the three germline layers

    Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming

    No full text
    The homeodomain transcription factor Nanog plays an important role in embryonic stem cell (ESC) self-renewal and is essential for acquiring ground-state pluripotency during reprogramming. Understanding how Nanog is transcriptionally regulated is important for further dissecting mechanisms of ESC pluripotency and somatic cell reprogramming. Here, we report that Nanog is subjected to a negative autoregulatory mechanism, i.e., autorepression, in ESCs, and that such autorepression requires the coordinated action of the Nanog partner and transcriptional repressor Zfp281. Mechanistically, Zfp281 recruits the NuRD repressor complex onto the Nanog locus and maintains its integrity to mediate Nanog autorepression and, functionally, Zfp281-mediated Nanog autorepression presents a roadblock to efficient somatic cell reprogramming. Our results identify a unique transcriptional regulatory mode of Nanog gene expression and shed light into the mechanistic understanding of Nanog function in pluripotency and reprogramming
    corecore