
Cell Stem Cell

Article
Regulation of Embryonic and Induced Pluripotency
by Aurora Kinase-p53 Signaling
Dung-Fang Lee,1,11 Jie Su,1,11 Yen-Sin Ang,1 Xonia Carvajal-Vergara,1 Sonia Mulero-Navarro,2 Carlos F. Pereira,1

Julian Gingold,1 Hung-Liang Wang,6 Ruiying Zhao,7 Ana Sevilla,1 Henia Darr,1 Andrew J.K. Williamson,9 Betty Chang,1

Xiaohong Niu,1 Francesca Aguilo,3 Elsa R. Flores,8,10 Yuh-Pyng Sher,6 Mien-Chie Hung,6,7,10 Anthony D. Whetton,9

BruceD.Gelb,2,4KateriA.Moore,1Hans-WillemSnoeck,3AviMa’ayan,5ChristophSchaniel,1,12 and IhorR.Lemischka1,5,12,*
1Department of Developmental and Regenerative Biology and The Black Family Stem Cell Institute
2Child Health and Development Institute
3Department of Oncological Sciences
4Departments of Pediatrics and Genetics & Genomic Sciences
5Department of Pharmacology and System Therapeutics

Mount Sinai School of Medicine, New York, NY 10029, USA
6Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
7Department of Molecular and Cellular Oncology
8Department of Biochemistry and Molecular Biology

The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
9School of Cancer and Imaging Sciences, Manchester Academic Health Science Centre, The University of Manchester,
Wolfson Molecular Imaging Centre, 27 Palatine Road, Withington, Manchester M20 3LJ, UK
10The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
11These authors contributed equally to this work
12These authors contributed equally to this work
*Correspondence: ihor.lemischka@mssm.edu

http://dx.doi.org/10.1016/j.stem.2012.05.020
SUMMARY

Many signals must be integrated to maintain self-
renewal and pluripotency in embryonic stem cells
(ESCs) and to enable induced pluripotent stem cell
(iPSC) reprogramming. However, the exact molecular
regulatory mechanisms remain elusive. To unravel
the essential internal and external signals required for
sustaining the ESCstate, we conducted a short hairpin
(sh) RNA screen of 104 ESC-associated phosphoregu-
lators. Depletion of one such molecule, aurora kinase
A (Aurka), resulted in compromised self-renewal and
consequent differentiation. By integrating global gene
expression and computational analyses, we discov-
ered that loss of Aurka leads to upregulated p53 acti-
vity that triggersESCdifferentiation.Specifically,Aurka
regulates pluripotency through phosphorylation-
mediated inhibition of p53-directed ectodermal and
mesodermal gene expression. Phosphorylation of p53
not only impairs p53-induced ESC differentiation but
also p53-mediated suppression of iPSC reprogram-
ming. Our studies demonstrate an essential role for
Aurka-p53 signaling in the regulation of self-renewal,
differentiation, and somatic cell reprogramming.

INTRODUCTION

Self-renewal and pluripotency of ESCs is maintained by the inte-

gration of multiple internal and external signaling pathways that

converge on well-characterized transcription factors (TFs) and

chromatin modifiers. The TFs Oct4, Sox2, Nanog, Esrrb, Tbx3,
C

Tcl1, Foxo1, and Foxo3a play essential roles in controlling the

ESC state by assembling a core regulatory network (Ivanova

et al., 2006; Zhang et al., 2011b). Auto- and cross-regulatory

network interactions maintain self-renewal by activating pluripo-

tency genes and suppressing lineage determinant genes (Ivanova

et al., 2006). Chromatin-remodeling complexes and other epige-

netic modifiers have been shown to regulate self-renewal and

differentiation by interacting with the core TF circuitry (Ang et al.,

2011a, 2011b; Schaniel et al., 2009). In contrast to the intensive

analysesof TFsandepigenetic regulators, only a fewcell signaling

pathways, such as Lif, BMP, and Wnt, have been shown to be

important formouse (m)ESCself-renewal (Sato et al., 2004; Smith

et al., 1988; Williams et al., 1988; Ying et al., 2003). It remains

unclear whether other signalingmolecules/pathways are required

for ESC self-renewal and how the range of signaling events is

integrated to sustain a transcriptional output that balances self-

renewal and differentiation. In order to identify the complete

range of signaling requirements in ESC fate control, we have

applied a systematic shRNA loss-of-function screening strategy.

We focused on protein kinases and phosphatases (PKases

and PPases) because these phosphoregulators play central roles

in signal transduction. Our results identify the Aurka-p53 signal-

ing pathway as a critical cell fate regulator and establish an im-

portant link between a specific phosphorylation event and p53

function in the maintenance and reacquisition of pluripotency.

RESULTS

Loss-of-Function shRNA Screen Identifies Protein
Kinases and Phosphatases Required for ESC
Self-Renewal and Pluripotency
PKase- and PPase-mediated phosphorylation and dephosphor-

ylation events control a wide range of biological processes. To
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Figure 1. Identifying PKases and PPases Involved in ESC Self-Renewal

(A) Selection of 104 gene products for functional analyses. Heat map showing 104 candidates chosen based on several different criteria including high expression

levels in ESCs, iPSCs, and cancer stem cells (red), downregulated expression upon RA treatment, and decreased expression upon the knockdown of ESC self-

renewal-associated transcription factors (TFs) (blue). Genes with no identified effects in the individual published studies are shown in gray. The x axis represents

the clustered 104 candidates identified in the individual studies. The y axis represents the individual data sets extracted fromWong et al. (2008); Mikkelsen et al.

(2008); Takahashi and Yamanaka (2006); Pritsker et al. (2006), and Ivanova et al. (2006). The 11molecules functionally identified in the initial stage of the screen are

labeled in orange. The total numbers of times the gene products occur in the selection criteria studies are indicated in parentheses above their names.

(B) A competition strategy is used to identify the effects of PKase and PPase knockdowns onmESC self-renewal. A total of 181 shRNAs (1–4 per gene depending

on their knockdown efficiencies) were designed targeting the 104 candidate genes. Knockdowns of 15 out of 104 genes show reduced propagation in

comparison to knockdown of Lifr in CCE ESCs.
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elucidate the phosphoregulatory proteins essential for mESC

self-renewal, we selected 104 candidates (81 PKases, 14

PPases, 2 PKase regulatory subunits, and 7 PPase regulatory/

structural subunits) (Table S1 available online). Selection criteria

included enriched expression in pluripotent cells and/or down-

regulation after differentiation induced by exposure to retinoic

acid (RA) or depletion of specific pluripotency TFs (Figure 1A;

Ivanova et al., 2006; Mikkelsen et al., 2008; Pritsker et al.,

2006; Takahashi and Yamanaka, 2006;Wong et al., 2008). A total

of 181 shRNAs targeting these gene products were evaluated

with a competition assay (Figure S1A; Ivanova et al., 2006; Lee

et al., 2012). This fluorescence- and proliferation-based assay

reveals compromised self-renewal by decreasing GFP+/GFP�

ratios during coculture of GFP+ shRNA-transduced CCE ESCs

and GFP� control cells. Downregulation of the Lif receptor (Lifr)

was used to set an emperical threshold for impaired self-

renewal. Depletion of 15 candidate gene products suggested

compromised self-renewal to an extent greater than downregu-

lation of Lifr (Figure 1B). To rule out cell line-specific effects, we

utilized a second line (E14T) and confirmed decreased GFP+/

GFP� ratios after depletion of 11 candidates (Figure 1C). These

include Acvr2a, Aurka, Aurkb, Bub1b, Chek1, Dyrk3, Mapk4,

Mapk13, Ppp4c, Ppm1g, and Ppp2r1b. Because shRNA-

transduced cells are first expanded in puromycin, severe impair-

ments to cell survival and proliferation would not be detected

in the screen. Indeed, cells expanded after depletion of known

apoptosis- and cell cycle-associated gene products have lower

knockdown efficiencies (�70%) (Figure 1B). This suggests

that mild depletion of such molecules is permissive for normal

viability and proliferation. Apoptosis- and cell cycle-associated

gene-product silencing has diverse effects in the competition

assay (Figures S1B and S1C). This argues against the possibility

that decreasing GFP+/GFP� ratios are due to compromised

general cell cycle mechanisms or increased apoptosis. To con-

firm impaired self-renewal, we measured mRNAs encoding

the essential pluripotency TFs Oct4, Sox2, Nanog, Esrrb, Tbx3,

Tcl1, Klf4, and Rex1 as well as surface expression of SSEA1.

Depletion of all 11 candidates led to reduced expression of

pluripotency markers, directly demonstrating compromised

self-renewal and pluripotency (Figures 1D, 1E, and S1D).

Aurka Is Enriched in Pluripotent and Embryonic Cells
Aurka was selected for in-depth analyses for several reasons.

First, high Aurka mRNA levels are characteristic of embryonic

tissues, oocytes, and fertilized eggs but not differentiated cells

and tissues (Figure 2A). Second, analyses in conditional TF

‘‘rescue’’ (R) ESCs showed decreases in Aurka mRNA and

protein upon differentiation triggered by removal of doxycycline

(Dox) in Nanog_R and Sox2_R (Figures 2B and 2C) but not in

control (Ctrl_R) (Figure 2D) cells. Downregulated Aurka expres-

sion was also detected in Oct4-repressible ESCs upon addition

of Dox (Figure 2E). Furthermore, transient RNAi-mediated
(C) Knockdown effects on self-renewal of 15 candidates are validated in E14T ES

severe competitive defect in comparison to threshold-defining knockdown of Lifr.

have no effect on Chek2 mRNA expression and are likely to represent nonspecifi

(D) Heat map depiction of decreased pluripotency TF expression after 6 cell pas

(E) Knockdown of 11 identified genes correlates with the lower staining intensity

See also Figure S1.

C

knockdowns of the pluripotency factors Nanog, Oct4, and

Wdr5 confirm decreasing Aurka levels as ESCs lose their plurip-

otent state (Figure 2F). Third, decreasing Aurka mRNA and

protein levels accompany embryoid body (EB) and RA-mediated

differentiation (Figures 2G). Taken together, the correlations

between Aurka expression and the undifferentiated state

strongly suggest a role in ESC pluripotency.

Loss of Aurka Impairs Self-Renewal and Triggers
Differentiation in ESCs
To exclude potential off-target effects, we used a complementa-

tion strategy where depletion of endogenous Aurka is ‘‘rescued’’

by a Dox-inducible shRNA-‘‘immune’’ version (Figure 3A; Ang

et al., 2011b; Ivanova et al., 2006; Lee et al., 2012). Lentiviral

cassettes were transduced into reverse tetracycline transacti-

vator (rtTA)-expressing ESCs (Ainv15) (Kyba et al., 2002). In

Aurka rescue (Aurka_R) cells cultured for 5 days without Dox,

low levels of Nanog, Oct4, Sox2, Esrrb, Tbx3, Tcl1, Klf4, and

Rex1 mRNAs were observed relative to cultures with Dox (Fig-

ure 3B). We also observed reduced pluripotency TF protein

levels (Nanog, Oct4, and Esrrb) upon removal of Dox from

Aurka_R cells (Figures 3C and 3D). In contrast, no significant

changes in TF levels were observed in Ctrl_R cells cultured

without Dox (Figure 3C, left). In the presence of Dox, Aurka_R

cells maintained an undifferentiated morphology, high alkaline

phosphatase (AP) activity, and SSEA1 expression (Figures 3E

and S2A). Moreover, treatment with the Aurka-specific chemical

inhibitor MLN8237 suppressed pluripotency TF expression and

decreased fluorescence in the NG4 Nanog-GFP reporter line

(Figures S2B and S2C; Schaniel et al., 2006, 2009). After Dox

removal, mRNA and protein levels of early mesodermal markers

(Brachyury/T and Mixl1) and ectodermal markers (Cxcl12 and

Fgf5), but not trophectodermal or endodermal markers, were

increased (Figures 3F and 3G). Furthermore, suppression of

Aurka in Brachyury/T-GFP reporter ESCs (Fehling et al., 2003)

led to increased fluorescence, supporting induction of meso-

dermal differentiation (Figure S2D).

We also measured cell cycle, proliferative, and apoptotic

parameters in Aurka_R cells and did not observe any significant

differences after Aurka depletion (Figures S3A–S3C). This

suggests that the residual Aurka levels (30%) are sufficient

for normal proliferative and survival functions. Although the

passage-dependent increase in the G2/M population upon

Aurka knockdown might have some effect in the competition

assay (Figure S3A), depletion of two other major cell cycle regu-

lators (Cdc2a and Cdk2) causing similar G2/M effects did not

lead to significant defects in ESC self-renewal (Figures S3C,

S3D, and S1C). These observations strongly argue that the

decreased percentage of GFP+ cells after Aurka knockdown

is not simply a consequence of generic cell cycle perturbation.

In addition, expression levels of mRNAs encoding apoptosis-

associated proteins showed only marginal changes, in contrast
Cs. Depletions of 11 out of 15 genes in both CCE and E14T cells lead to a more

Chek2 shRNAs (gray circles) show a significant effect on ESC self-renewal but

c, off-target effects.

sages after knockdown of the 11 PKases and PPases.

of ESC surface marker SSEA1 in comparison to a Luc control shRNA.
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Figure 2. ESC Pluripotent State Is Impaired upon Downregulation of Aurka Expression

(A) Heat maps showing enriched expression of Aurka in preimplantation tissues, embryonic tissues, and ESCs. Gene expression data from different tissues,

including embryonic stage, nervous system, blood system, bone tissue, and other organs, are obtained from BioGPS with the mouse GeneAtlas GNF1M

database and further analyzed by Cluster and displayed by Treeview. High and low expression levels of indicated genes in different tissues are represented in

red and blue colors, respectively.
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to extensive increases of lineage-specific gene expression

levels (Figure S3F). Therefore, milder knockdown of Aurka in

mESCs appears to preserve its basic proliferative and viability

functions but directly impairs pluripotency and promotes differ-

entiation. Collectively, our results strongly support a direct role

of Aurka in maintaining pluripotency.

Impact of Aurka Downregulation on the p53-Associated
Transcriptome
Aurka functions as a mitotic kinase whose dysregulation results

in centrosomal abnormalities, chromosome segregation de-

fects, and aneuploidy (Badano et al., 2005). Accordingly, we

asked whether ESC identity is mediated through Aurka binding

partners or substrates with established functions in chromo-

some biology (Barr and Gergely, 2007). Depletion of Aurka

mitotic substrates mBora, Jub, Tpx2, and Plk1 did not cause

significant defects in self-renewal (Figure S4), indicating

mitosis-independent mechanisms. In order to elucidate such

mechanisms, we analyzed global gene expression changes

after Aurka downregulation. Global transcriptome changes in

Aurka_R cells were measured with Illumina Beadchip microar-

rays 5 days after Dox removal (Table S2). As expected, levels

of numerous pluripotency factors were downregulated whereas

levels of differentiation markers were increased (Figure S5A).

Gene set enrichment analyses (GSEA) showed enrichment of

an ESC-associated signature only in the presence of Aurka

(Figure S5B). Gene ontology (GO) analyses by the PANTHER

classification system revealed that Aurka depletion affects

biological processes mainly involved in cell motility, immune

system process, cell adhesion and, as expected, ectodermal

and mesodermal development (Figures S5C–S5E).

In order to identify TFs responsible for the gene expression

changes after Aurka depletion, we considered those with

known binding motifs in promoter regions (ranging from �2 kb

to +2 kb of the transcription start site) or previously shown to

interact with promoters by chromatin immunoprecipitation

(ChIP) (Lee et al., 2010; Marson et al., 2008). We performed

GSEA analyses on target gene sets of these TFs weighted by

their measured expression levels. We examined 623 sets and

indeed found an enrichment of pluripotency TF targets in the

rescued Aurka (+Dox) transcript set and, in contrast, an enrich-

ment of ectodermal and mesodermal TF targets in the Aurka

(�Dox) knockdown sets (Figure 4A, left and middle). TFs with

downstream targets that were positively enriched upon Aurka
(B and C) Time-course experiments demonstrate decreased expression of b

ESC pluripotency factors Nanog and Sox2 in Nanog_R and Sox2_R cells, resp

Sox2_R cells are represented in red and blue, respectively.

(D) Withdrawal of Dox in Ctrl_R cells does not alter Aurka expression. High and

and blue, respectively.

(E) Depletion of Oct4 leads to diminished Aurka mRNA and protein expression

mean ± SEM; n = 3.

(F) Transient knockdown of Nanog, Oct4, or Wdr5 by RNAi results in reduced Au

n = 3.

(G) Aurka expression decreases in parallel with pluripotency markers Nanog, O

differentiation markers Gata4 and Cxcl12 increase. In EB-mediated differentiati

differentiation of J1 ESCs adapted from GSE3749, whereas the middle and low

during EB differentiation of CCE ESCs. In RA-induced differentiation, the upper pa

represent qRT-PCR and immunoblotting results, respectively, from RA-treated

and low expression levels of indicated genes are represented in red and blue, re

C

downregulation were consistently upregulated during EB dif-

ferentiation, whereas TFs with negatively enriched targets

showed decreasing expression during differentiation (Figure 4A,

right). Interestingly, although p53 mRNA expression decreased

during EB differentiation, an increased expression of p53

targets, including Mdm2 and p21Cip1, was detected upon

loss-of-Aurka-induced differentiation (Figures 4A and 4B).

These observations strongly suggest posttranscriptional/

translational regulation of p53 function in the presence of

Aurka. Quantitative (q) RT-PCR confirmed the upregulation of

several p53 target genes upon Aurka knockdown (Figure S5F).

Increased expression of p53 targets was detected after deple-

tion of Aurka but not the pluripotency TFs Nanog and Esrrb

(Ivanova et al., 2006) or the epigenetic modifier Wdr5 (Figure 4C;

Ang et al., 2011b). Repression of Aurka kinase activity by

different inhibitors also led to increased Mdm2 and p21Cip1

levels (Figure S5G). Importantly, simultaneous shRNA-medi-

ated depletion of Aurka and p53 restored pluripotency TF

expression levels (Figure 4D). These results strongly suggest

that regulation of ESC identity by Aurka is mediated, at least

in part, by negative regulation of p53 activity.

Aurka Phosphorylates and Suppresses p53 Activity
in mESCs
Our finding that depletion of Aurka results in activation of p53

signaling led us to investigate the underlying mechanism by

which Aurka suppresses p53. We noticed two evolutionarily

conserved putative Aurka phosphorylation sites on p53 (Ser212

and Ser312) (Figure 5A), implying that p53 is an Aurka substrate.

To investigate the interaction between Aurka and p53, we per-

formed coimmunoprecipitation (co-IP) and showed that exoge-

nous Aurka physically associates with p53 (Figure 5B). We

confirmed an interaction in mESCs by using antibodies to p53

(Figure 5C). Given the Aurka-p53 interaction and the putative

phosphorylation sites, we next asked whether p53 is an Aurka

substrate. In vitro kinase assays demonstrated that p53 was

strongly phosphorylated by Aurka, whereas mutation of either

Ser residue to Ala decreased [p53(S212A) or p53(S312A)] or

abolished [double mutant p53(SSAA)] phosphorylation (Fig-

ure 5D). These results suggest that Aurka can directly phos-

phorylate both Ser212 and Ser312 in vitro.

To askwhether these phosphorylation events occur in vivo, we

raised mouse polyclonal antibodies to p53 phosphorylation at

Ser212 [p-p53(S212)] or Ser312 [p-p53(S312)]. These antibodies
oth Aurka mRNA and protein upon Dox withdrawal-mediated depletion of

ectively. High and low expression levels of indicated genes in Nanog_R and

low expression levels of indicated genes in Ctrl_R cells are represented in red

in the Oct4-repressing ESC line ZHBTc4. qRT-PCR data are represented as

rka expression in CCE cells. qRT-PCR data are represented as mean ± SEM;

ct4, and Sox2 during EB formation and RA-induced differentiation, whereas

on, the upper panel represents microarray transcriptome analyses during EB

er panels represent qRT-PCR results and immnuoblotting data, respectively,

nel representsmicroarray analyses (GSE4679) and themiddle and lower panels

CCE ESCs. qRT-PCR data are represented as mean ± SEM; n = 3. High

spectively.
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Figure 3. Aurka Depletion Results in Loss of Self-Renewal and Differentiation in ESCs

(A) The lentivirus-based rescue cassette contains a human U6 promoter-driven Aurka shRNA targeting the 30UTR and a tetracycline response element (TRE)

promoter driving the exogenous Aurka and GFP, expressed via an IRES element. In the absence of Dox, both Aurka and GFP are not expressed. In the presence

of Dox, the exogenous Aurka is expressed and relieves the knockdown effect caused by Aurka shRNA. GFP is expressed as well.

(B) Defective expression of self-renewal genes Nanog, Oct4, Sox2, Esrrb, Tbx3, Tcl1, Klf4, and Rex1 is restored in Aurka_R cells cultured for 5 days in Dox. qRT-

PCR data are represented as mean ± SEM; n = 3. *p < 0.05 by Student’s t test.

(C) Immunoblotting shows downregulation of Nanog, Oct4, and Esrrb 5 days after removal of Dox in Aurka_R but not Ctrl_R cells.

(D) Immunostaining 5 days after Dox removal from Aurka_R cells shows decreased expression of self-renewal TFs Oct4, Nanog, and Sox2.

(E) ESC differentiation is apparent from the morphologies of Aurka_R cells maintained for 5 days without Dox. In contrast, Ctrl_R cells do not show any differ-

entiation phenotype without Dox. This is consistent with shRNA-mediated knockdown results in CCE cells. The number of undifferentiated (ud), partially
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specifically recognize the phosphorylated peptides (Figure 5E).

Levels of p-p53(S212) and p-p53(S312) were increased after

cotransfection of p53 and Aurka (Figure 5F). Moreover, the

levels of p-p53(S212) and p-p53(S312) were decreased in

Aurka_R cells cultured without Dox (Figure 5G). Mass spectrom-

etry analysis further showed that depletion of Aurka results in

complete absence of p-p53(S212) in Aurka_R cells (Figure 5H),

indicating that Aurka is the major, if not the only, p53 Ser212

kinase in mESCs. Given our observations that depletion of

Aurka results in increased p53 transcriptional activity (Figures

4A and 4B) and that p53 is an Aurka phsophorylation target

(Figures 5D and 5F–5H), we asked whether this modification

inactivates p53. We generated phosphomimic mutants of p53

[p53(S212D), p53(S312D), and p53(SSDD) (double mutant)]

and transfected these into ESCs together with a p53 transcrip-

tional reporter. Measurement of p53 activity showed that

p53(WT) and p53(S312D) but not p53(S212D) and p53(SSDD)

activate a p53 reporter (Figure 5I). These findings demonstrate

that Aurka-mediated phosphorylation of p53(S212) but not

p53(S312) impairs p53 transcriptional activity in mESCs.

IncreasedExpression of p53-AssociatedDevelopmental
Genes after Depletion of Aurka
Although p53 has been shown to induce ESC differentiation by

suppressing Nanog expression (Lin et al., 2005), downregula-

tion of Nanog results in primitive endodermal differentiation

(Ivanova et al., 2006; Mitsui et al., 2003). In contrast, knock-

down of Aurka promotes mesodermal and ectodermal differen-

tiation (Figures 3F, 3G, and S5C). Although p53 is clearly

involved in this process, these results are not consistent with

a Nanog-suppression mechanism. We suggest an unexplored

ESC function for p53 beyond suppressing Nanog. To address

this we analyzed the direct targets of p53 by using a published

genomic localization data set (Lee et al., 2010). Expression

levels of p53 target genes are increased in the absence of

Aurka (Figure 6A, top) and the majority of these are involved

in developmental processes, especially in ectodermal and

mesodermal development (Figure 6A, bottom). This is consis-

tent with the biological processes affected by loss of Aurka

(Figure S5C). Grid analysis of time-series expression (GATE)

of EB differentiation-associated gene expression profiles also

showed upregulation of p53 targets (group I) (Figure 6B; Mac-

Arthur et al., 2010). Conversely, the biological functions and

expression profiles of Nanog targets (group II) are directly

correlated with a pluripotent state (Figure 6B). GO analyses

revealed that p53 target genes are significantly involved in

developmental processes (ectodermal and mesodermal

differentiation) and are not enriched in cell cycle or apoptosis

categories (Figures 6A and 6C). In agreement with these find-

ings, depletion of Aurka promoted increased expression of

p53-occupied genes (e.g., ectodermal and mesodermal devel-
differentiated (pd), and fully differentiated (fd) ESC colonies are represented in the

Student’s t test.

(F) Aurka knockdown induces the expression of Brachyury/T, Bmp5, Mixl1 (meso

maintained without feeder cells in either Dox or Dox-free conditions for 5 days.

(G) Immunoblotting demonstrates increased Brachyury/T (mesodermal marker) a

cells cultured without Dox. Expression of Brachyury/T, Cxcl12, and Foxa2 is not

See also Figures S2 and S3.

C

opment-associated genes) and decreased expression of

Nanog targets (e.g., pluripotency TFs) in Aurka_R cells (Fig-

ure 6D). Collectively, our observations suggest that a major

function of p53 in ESCs is the positive regulation of differentia-

tion-associated genes. Furthermore, studying the effects of

Aurka-mediated p53 phosphorylation on ESC pluripotency

via wild-type p53 and phosphomimic mutants showed that

p53(WT) and p53(S312D) but not p53(S212D) or p53(SSDD)

reduced the expression of pluripotency TFs Nanog and Tcl1

and increased the expression of ectodermal and mesodermal

genes (Figure 6E). These results were confirmed in NG4

reporter cells, in which enforced expression of p53(WT) and

p53(S312D), but not p53(S212D) and p53(SSDD), reduced

Nanog reporter levels (Figure 6F). Aurka-mediated phosphory-

lation of both Ser212 and Ser312 impaired function in somatic

cells (Katayama et al., 2004; Liu et al., 2004); however, only the

S312D phosphomimic mutant compromised pluripotency and

promoted differentiation. These results suggest that Aurka-

mediated phosphorylation of Ser212 plays the major role in

negatively regulating p53 function in ESCs and further empha-

size its distinct regulation in undifferentiated versus differenti-

ated cells. In the absence of Aurka and this single phosphory-

lation event, p53 directly activates mesodermal and ectodermal

differentiation programs.

The Role of Aurka-p53 Signaling in Somatic Cell
Reprogramming
Given the essential role of Aurka in maintaining ESC identity,

we asked whether it functions during iPSC reprogramming

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu

et al., 2007). We observed upregulation of Aurka during mouse

iPSC generation by Oct4, Sox2, Klf4, and c-Myc (OSKM)

(Figures S6A and S6B). In addition, analyses of data sets from

iPSCs generated by different factors andmethods and in various

species, including humans (Carvajal-Vergara et al., 2010; Ebert

et al., 2009; Feng et al., 2009; Ku et al., 2010; Soldner et al.,

2009; Zhang et al., 2011a), consistently revealed upregulation

of Aurka levels (Figures S6C–S6H). Aurka upregulation is there-

fore a general phenomenon in reprogramming. Knockdown of

Aurka in Dox-inducible reprogrammable Oct4-GFP mouse

embryonic fibroblasts (MEFs) markedly reduced the number of

AP-positive iPSC colonies (Figure 7A; Stadtfeld et al., 2010).

Although Aurka downregulation decreased MEF proliferation,

no increases in iPSC colonies were observed even with pro-

longed culture times (Figure 7A). These results suggest that

decreased iPSC generation is not due to adverse effects on

proliferative capacity at any stage of reprogramming. Residual

iPSC colonies originating from Aurka shRNA-transduced MEF

cells did not contain the shRNA expression cassette (Figure S6I,

left) nor did they express GFP (Figure S6I, right), and they

showed no significant changes in Aurka levels (Figure S6J).
histograms. AP colony data are represented asmean ± SEM; n = 3; *p < 0.01 by

dermal lineage), Cxcl12, and Fgf5 (ectodermal lineage). The Aurka_R cells are

nd Cxcl12 (ectodermal marker) but not Foxa2 (endodermal marker) in Aurka_R

altered upon withdrawal of Dox in the Ctrl_R cells.
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Figure 4. Upregulation of p53 Signaling after Aurka Knockdown

(A) GSEA analyses identify enriched TF targets expressed either in Aurka-expressing ESCs or after Aurka depletion and associated differentiation. A total of 623

TF binding motif or ChIP target gene sets are used (left). Normalized enrichment scores (NES) are examined and correlated with gene expression during EB

formation by using a public data set (GSE3749). A positive NES (red) represents targets of selected TFs that are enriched in the transcriptome of ESCs expressing

Aurka. A negative NES (blue) represents the targets of selected TFs that are enriched in the transcriptome of ESCs after Aurka depletion. Enriched gene sets are

selected based on statistical significance (FDR q value < 0.25 and normalized p value < 0.05). Three examples are shown in themiddle panels for E2F1 (top), Msx1

(middle), and p53 (bottom). High and low expression of indicated genes in EB samples (right panel) are represented in red and blue, respectively.

(B) Expression of p53 target genes is enriched in Aurka-knockdown ESCs. High and low expression levels of indicated genes in Aurka_R cells cultured with and

without Dox are represented in red and blue, respectively.

(C) FDR q values and normalized p values (left) and heat map depiction (right) showing the enrichment of multiple p53 target gene sets specifically in the

Aurka-associated transcript set but not in the Nanog-, Esrrb-, or Wdr5-associated sets. Each data point represents the NES associated with loss of expression

of Aurka. GSEA data set significance is calculated at a FDR q value < 0.25 and normalized p value < 0.05 (dashed red lines in left panel). Nonsignificance (ns)

is indicated in gray.
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Collectively, our results indicate that depletion of Aurka com-

pletely blocks OSKM-mediated reprogramming.

To further exclude the possibility that reprogramming defects

were due to impaired proliferative ability in the absence of Aurka,

we utilized a heterokaryon technique that requires neither

genome duplication nor cell division (Pereira et al., 2008).

Suppression of reprogramming in this system by inhibition of

Aurka supported its essential role in reprogramming (Figure 7B).

A positive role in reprogramming was further supported by

Aurka overexpression with resultant increases in iPSC colony

numbers (Figure S6K). Although overexpression of Aurka

promoted MEF proliferation, the noticeable increases in iPSC

colonies exceeded these minor proliferative increases.

Because depletion of Aurka leads to increased p53 activity,

we asked whether simultaneous depletion of p53 is sufficient

to rescue iPSC reprogramming. Indeed, depletion of p53 or

Arf, an Mdm2 antagonist and thus an inhibitor of p53 degrada-

tion, rescued reprogramming in Aurka-depleted cells (Figures

7C and S7A). Importantly, the p53(S212D) and p53(SSDD)

but not the p53(S312D) phosphomimic mutants lost their ability

to counteract the reprogramming process after transduction

into p53�/� MEFs (Figure 7D and S7B). In agreement with the

impairment of p53 transcriptional activity via Ser212 phosphor-

ylation, ectopic expression of p53(WT) and p53(S312D) but

not p53(S212D) or p53(SSDD) activated p21Cip1 and Mdm2

expression even with much lower p53(WT) and p53(S312D)

than p53(S212D) and p53(SSDD) protein levels (Figure S7C).

Reductions in iPSC colony numbers were observed even after

prolonged culture times (Figure 7D). Consistent results were

also obtained with reprogrammable Oct4-GFP MEFs (Fig-

ure S7D). Taken together, our findings demonstrate that an

essential aspect of iPSC reprogramming is Aurka-mediated

inhibition of p53 by phosphorylation of a single residue,

Ser212. Moreover, out data suggest that the negative effects

of p53 on reprogramming also depend, at least in part, on the

activities of upstream pathway components such as Arf.

DISCUSSION

Pluripotent stem cells hold great promise for regenerative

medicine (Murry and Keller, 2008). In order to realize this poten-

tial, an in-depth understanding of the mechanisms controlling

self-renewal, pluripotency, and transitions in cell fate is neces-

sary. With the recent ability to derive patient-specific iPSCs,

dissection of these regulatory mechanisms may provide more

effective and safer avenues for iPSC reprogramming as well

as better methodologies to maintain them in a pluripotent

state and direct them toward specific differentiated cell fates.

To investigate the signaling cascades required for ESC self-

renewal, we conducted a loss-of-function screen targeting

PKases and PPases and identified the PKase Aurka to be

required for pluripotency. Further studies demonstrated that
(D) Decreased expression of pluripotency genes after loss of Aurka is rescued by

(left) and qRT-PCR (right). Expression of p21Cip1 is an indicator of functional p53

All data are represented as mean ± SEM; n = 3. *p < 0.05 by Student’s t test for p5

exposure.

See also Figures S4 and S5.

C

Aurka-mediated phosphorylation of p53 is essential for maintain-

ing ESC self-renewal and pluripotency.

The p53 protein is a stress-response TF that controls the

expression of genes involved in DNA repair, apoptosis, cell

cycle, and senescence (Ko and Prives, 1996; Riley et al.,

2008). Intensive research on p53 has focused on its functions

in differentiated cells; however, its role in ESCs remains largely

unexplored. Recent studies suggest a role for p53 in ESC self-

renewal and pluripotency as well as in somatic cell reprogram-

ming (Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009;

Marión et al., 2009; Sarig et al., 2010; Utikal et al., 2009). Ectopic

expression and/or activation of p53 have been suggested to

promote ESC differentiation by suppression of Nanog (Han

et al., 2008; Lin et al., 2005). A genome-wide study of p53 binding

targets in mESCs has implicated upregulation of the Wnt

pathway in preventing differentiation (Lee et al., 2010). Collec-

tively, these findings indicate that p53 must be tightly regulated

to ensure ESC identity and proper differentiation decisions.

In contrast to ESCs and iPSCs, adult cells express low levels of

p53 (Kawamura et al., 2009; Sabapathy et al., 1997; Solozobova

and Blattner, 2010). Differentiated cells show strong responses

to modest increases in p53 levels, whereas ESCs are extremely

resistant to stress-induced (e.g., DNA damage) p53-mediated

signals (Qin et al., 2007; Sabapathy et al., 1997). This suggests

that in ESCs the activity of p53 must be restricted. Transcrip-

tional, translational, and posttranslational mechanisms have

been shown to modulate p53 levels and activities (Bode and

Dong, 2004; Brooks and Gu, 2003). Two key regulators of p53

stability are its transcriptional target the E3 ubiquitin ligase

Mdm2 and Arf, an Mdm2 antagonist. Mdm2 regulates p53 by

direct binding and ubiquitination resulting in proteasome-medi-

ated degradation. Arf antagonizes Mdm2 by sequestering it in

the nucleolus (Weber et al., 1999), thus preventing p53 degrada-

tion. This regulation has been shown to play an essential role in

p53-mediated processes, including the inhibition of iPSC re-

programming (Hong et al., 2009; Kawamura et al., 2009;

Li et al., 2009; Marión et al., 2009; Sarig et al., 2010; Utikal

et al., 2009). The most common posttranslational modification

of p53 is phosphorylation. Phosphorylation events influence

the stability and transcriptional activity of p53 as well as its ability

to bind to a variety of protein partners (Bode and Dong, 2004).

How cell signaling controls p53 function via phosphorylation

has been extensively analyzed in adult cells. However, the anal-

ogous cellular signals that function in ESCs remain largely

unknown.

Aurka is an evolutionarily conserved serine/threonine kinase

with key mitotic regulatory functions (Barr and Gergely, 2007).

Specifically, Aurka phosphorylates and modulates the activities

of multiple mitosis-associated proteins (e.g., Tacc and Ndel1)

(Barros et al., 2005; Mori et al., 2007), thereby enabling and

orchestrating centrosome maturation, spindle assembly, and

mitotic entry. Aurka is considered as the gatekeeper of mitosis;
knockdown of p53 by two distinct shRNAs when examined by immunoblotting

. Relative mRNA expression is normalized to levels in the Luc shRNA control.

3 shRNA2 and p53 shRNA4 versus Luc shRNA. se, shorter exposure; le, longer
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Figure 5. Aurka Interacts and Phosphorylates p53

(A) Two putative Aurka phosphorylation sites, Ser212 and Ser312, are found in p53. Ser212 is a classical (RXS) Aurka phosphorylation site that is evolutionarily

conserved among human, mouse, and Xenopus. Ser312 is conserved only in human and mouse. R, arginine; X, any amino acid; S, serine.

(B) Interaction between exogenously expressed p53 and Aurka. Lysates of HEK293T cells cotransfected with Myc-tagged p53 and Flag-tagged Aurka are

analyzed by reciprocal co-IP and immunoblotting using tag antibodies.

(C) Endogenous p53 interacts with Aurka. Lysates of mouse CCE cells are analyzed by co-IP using anti-p53 (FL-393) or control IgG antibodies and immuno-

blotting using anti-Aurka and anti-p53 (FL-393) antibodies.

(D) Detection of the Aurka-mediated phosphorylation on p53 Ser212 and Ser312 by in vitro kinase assay. Aurka immunocomplexes are pulled-down from

HEK293T cells and incubated with the indicated Myc-tagged p53 proteins.

(E) Characterization of antibodies to p-p53(S212) and p-p53(S312). Dot blot shows that both antibodies specifically recognize their respective phosphopeptides

but not nonphosphopeptides.

(F) Aurka phosphorylates p53 at Ser212 and Ser312 in vivo. Myc-tagged p53 and Flag-tagged Aurka are cotransfected into ESCs, immunoprecipitated, and

analyzed with antibodies to p-p53(S212) and p-p53(S312).

(G) Depletion of Aurka 2 days after Dox withdrawal decreases p-p53(S212) and p-p53(S312) levels in Aurka_R cells.

(H) Phosphorylation of p53 (Ser212) is assessed with quantitative mass spectrometry with isotopomeric standards of the appropriate tryptic peptides

(HSVVVPYEPPEAGSEYTTIHYK and H[pS]VVVPYEPPEAGSEYTTIHYK). Selected reaction monitoring is performed at the appropriate elution time for these

peptides in biological samples spiked with the isotopomeric standards. Using this approach, ratiometric values for the degree of phosphorylation in the samples

are determined.

(I) Cell lysates fromwild-type andmutant p53 transfected together with PG13-Luc, containing wild-type p53 binding sites, and control TK-RLuc into CCE cells for

2 days are assayed for p53 activity. Luminescence ratios of PG13-Luc to TK-Rluc were calculated and normalized to vector-transfected cells. All data are

represented as mean ± SEM; n = 3. *p < 0.01 by Student’s t test.
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Figure 6. Loss of Aurka Results in p53-Mediated Developmental Gene Activation

(A) GSEA analysis indicates enriched expression of direct p53 transcriptional targets upon knockdown of Aurka and GO biological process analyses of p53

ChIP targets by Panther Classification System.

(B) Diverse regulation of p53 targets (group I) and Nanog targets (group II) during EB differentiation. Gene expression is normalized to day 0. Time series

expression data are analyzed by qRT-PCR and visualized by GATE. Red and green represent up- and downregulation of gene expression, respectively.

(C) Functional categorization of upregulated p53-bound targets after Adriamycin treatment is analyzed for GO biological processes via Panther Classification

System.
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however, growing evidence suggests additional roles in various

cellular processes. For example, Aurka regulates the protein

translationmachinery through phosphorylation of Cpeb (Mendez

et al., 2000a, 2000b). In addition, gene amplification and overex-

pression of Aurka are linked to tumorigenesis via mechanisms

that include phosphorylation of Gsk3b (Dar et al., 2009) and

p53 (Katayama et al., 2004; Liu et al., 2004; Pascreau et al.,

2009). Although the functions of Aurka in adult cells have been

extensively explored, information about its roles in ESCs is

very limited because homozygous mutant embryos do not

survive past the 16-cell stage (Cowley et al., 2009; Lu et al.,

2008; Sasai et al., 2008).

Our functional screen identifies a role for Aurka in maintaining

ESC self-renewal and pluripotency that is consistent with

Aurka’s functions in embryogenesis. Systematic integrated

analyses were performed to elucidate the putative downstream

molecules and pathways involved in this activity. We demon-

strate that increased p53 signaling is responsible for the differ-

entiation triggered by loss of Aurka. Interestingly, p53 has been

identified as a physiological Aurka substrate with phosphoryla-

tion sites Ser215 and Ser315 in human (mouse Ser212 and

Ser312) (Katayama et al., 2004; Liu et al., 2004; Pascreau

et al., 2009). Phosphorylation of Ser215 impairs DNA binding

and transcriptional activity (Liu et al., 2004), whereas phosphor-

ylation of Ser315 facilitates Mdm2-induced degradation (Ka-

tayama et al., 2004). By using phosphomimic mutants of p53,

we demonstrate that Ser212 phosphorylation plays the major

role in Aurka-mediated p53 inactivation in both the maintenance

and reacquisition of pluripotency. Without inactivation, p53

promotes differentiation largely by directly inducingmesodermal

and ectodermal genes. Although Ser312 phosphorylation might

not have an essential role in ESC regulation, we do not rule

out the possibility of its involvement in other p53-mediated

processes, particularly in various physiological stress responses

(Katayama et al., 2004). The unusually high Aurka levels in ESCs

or during iPSC reprogramming would also provide a substantial

survival advantage by inhibiting p53-mediated cell cycle arrest,

apoptosis, senescence, and differentiation.

Interestingly, a significant proportion of p53 targets in ESCs

are involved in developmental processes, rather than in cell

cycle or apoptosis. Targets upregulated after treatment with

Adriamycin are also involved in developmental processes (Fig-

ure 6C). We suggest that the primary function of p53 in ESCs

may be to balance pluripotency and differentiation. During

iPSC reprogramming, p53 levels are increased and activate

cell cycle-, apoptosis-, and senescence-related programs,

thereby limiting this process. Because expression of specific

factors is dependent on cell type and p53 activity is regulated

by a variety of mechanisms, we expect that in undifferentiated

and differentiated cells its phosphorylation by Aurka may result
(D) Upregulation of p53/Nanog co-occupied target genes upon Aurka knockdow

(E) Ectopic expression of p53(WT) or p53(S312D) but not p53(S212D) or p53(S

differentiation. Lentiviruses encoding wild-type and mutant p53 are transduced

expression of p53 ismeasured by immunoblotting (top) and qRT-PCR (bottom). Al

longer exposure.

(F) Ectopic expression of p53(WT) or p53(S312D) but not p53(S212D) or p53(SSDD

mutant p53 are transduced into NG4 cells followed by 2 days of puromycin select

control.
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in a range of functionally diverse p53-containing complexes.

Identification of p53 protein-protein interaction networks in the

presence and absence of Aurka will provide additional insights

into ESC/iPSC self-renewal as well as the variety of mechanisms

that cells employ to regulate their fates.

In summary, we demonstrate that in the absence of Aurka,

increased p53 signaling promotes ESC differentiation. A single

Aurka-mediated phosphorylation event is largely responsible

for inactivating p53. We further show that suppression of p53

activity by Aurka is essential during iPSC reprogramming (Fig-

ure 7E). The central roles of the Aurka-p53 signaling axis in

maintaining and reacquiring a pluripotent state provide impor-

tant new starting points for uncovering novel signaling mecha-

nisms and developing avenues to control cell fates. Further

investigation of the other phosphoregulators identified in our

screen will shed additional light on the identities, functions,

and the overall complexity of signaling networks in ESCs/iPSCs.

EXPERIMENTAL PROCEDURES

Competition Assay

The competition assay was performed as described previously (Ivanova

et al., 2006; Lee et al., 2012). In brief, cells were mixed at a ratio of 80%

shRNA-transduced ESCs (GFP+) to 20% control (Luc) shRNA-transduced

cells (GFP�) and cultured in gelatin-coated 6-well plates. Culture media was

replaced daily and cells were trypsinized and replated every 2 days. At the

sixth passage, the proportions of GFP+/GFP� cells were measured by a BD

LSR II flow cytometer (BD Biosciences).

Derivation of Ainv15 Rescue Clones and Differentiation Assay

Generation of Aurka and control rescue clones and differentiation assay were

performed as previously described (Ivanova et al., 2006; Lee et al., 2012).

Panther and GSEA Analyses

Gene ontology analysis was performed by Panther Classification System

(http://www.pantherdb.org/) with all NCBIMusmusculus genes as a reference

list. Gene ontology biological process with Bonferroni correction was applied.

GSEA analysis was performed by using GSEA software with the enrichment

statistic equal to weighted and the metric for ranking genes equal to signal-

to-noise. GSEA for Figures 4A–4C, 6A, and 6C was performed with ChIP-

Chip data from previous studies (Lee et al., 2010; Marson et al., 2008). The lists

of genes with promoter regions [�2 kb, +2 kb] containing TF binding motifs

were found in the GSEA website gene sets database c3.tft.v2.5.symbols

[motif]. GSEA for Figure S5B was performed with the ESC signature gene

set using the embryonic stem cell-like gene expression signature genes

from previous studies (Ben-Porath et al., 2008). Global ESC gene expression

data upon UV or Adriamycin treatment were obtained from a published data-

base (GSE16428) (Lee et al., 2010). GSEA results were considered significant

when the false discovery rate (FDR) q value was less than 0.25 and nominal

(NOM) p value is less than 0.05.

Somatic Cell Programming

Mouse p53�/� MEFs were seeded at a density of 50,000 cells in 6-well plates

and infected with pMXs-based OSKM (Oct4, Sox2, Klf4, and c-Myc) together

with either p53 wild-type or mutant retrovirus for 24 hr. Infected cells were split
n (�Dox) in two independent Aurka_R clones.

SDD) impairs ESC pluripotency and promotes mesodermal and ectodermal

into CCE cells for 3 days followed by 2 days of puromycin selection. The

l qRT-PCRdata are represented asmean ± SEM; n = 3. se, shorter exposure; le,

) downregulates Nanog promoter activity. Lentiviruses encoding wild-type and

ion. Selected cells are analyzed by flow cytometry with CCE cells as a negative

http://www.pantherdb.org/
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Figure 7. Suppression of p53 by Aurka Is Required for Somatic Cell Reprogramming

(A) Inhibition of the reprogramming process in reprogrammable MEFs by Aurka depletion. Reprogrammed iPSC colonies after Aurka and Luc knockdown are

identified by AP staining at day 9. MEF proliferation upon Aurka knockdown is determined by MTT assay. All values shown are mean ± SEM for n = 3.

(B) Inhibiting Aurka activity by MLN8237 suppresses nuclear reprogramming in heterokaryons. Interspecies heterokaryons are generated by PEG-mediated

fusion of human B lymphocytes and mouse E14T ESCs. Induction of human embryonic genes (OCT4, NANOG, CRIPTO) and decrease of human B lymphocytic

genes (CD19 and CD45) are measured to evaluate the reprogramming efficiency.
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into 6-well plates at a density of 5,000 cells per well and maintained in iPSC

culture media. Media was changed every day. Simultaneously, 1,000 infected

cells were seeded onto a 96-well plate for the MTT assay as described previ-

ously (Kuo et al., 2010). After 6 days, iPSC clones were examined by both AP

staining and Oct4 immunostaining. The expression of p53 was determined

by qRT-PCR 4 days postinfection. For the Dox-induced reprogramming

approach, Col-SC, M2-rtTA, and Oct4-GFP MEFs (Stadtfeld et al., 2010)

were seeded at a density of 50,000 cells in 6-well plates and infected for

24 hr with shRNA lentiviruses or retroviruses expressing wild-type or mutant

p53. Infected cells were split into 6-well plates at a density of 20,000 cells

per well and subsequently maintained in iPSC culture media containing

2 mg/ml Dox. After 9 days, iPSC clones were detected by AP staining and

GFP fluorescence. All animal housing and procedures were approved by the

Institutional Animal Care and Use Committee and conducted in accordance

with the Animal Welfare Act.

Heterokaryon-Based Reprogramming

Heterokaryons were generated by fusing human B-lymphocytes and

MLN8237-pretreated mouse ESCs using polyethylene glycol (pH 7.4) (PEG

1500; Roche Diagnostics) as described previously (Pereira et al., 2008).
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(C) AP staining shows that knockdown of p53 or the Mdm2 antagonist Arf res

reprogrammable MEFs. Because of the rapid growth observed in Arf shRNA2-t

other experiments. AP-positive colonies are counted in three independent experim

(D) p53(S212D) but not p53(S312D) loses the ability to suppress iPSC reprogra

p53(SSDD)] are coinfected with OSKM factors into p53�/� MEFs. iPSC colonies a

various p53 mutant is measured by MTT assay (bottom, left). High and low Oc

expression levels (bottom, right). Oct4-positive colonies are counted in three ind

(E) Model for the Aurka-p53 signaling axis in ESC self-renewal and iPSC rep

consequent suppression of p53 activity impairs differentiation in ESCs and facili

See also Figures S6 and S7.
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